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Abstract

In our information cascade experiments, we study social learning in decision-

making situations in which decisions “not to do” are unobservable. Subjects, in

sequence, choose whether to invest or not, without knowing their position. They

observe a private signal and the number of investments made by their predecessors,

but not how many predecessors have chosen not to invest. We find that down cas-

cades, in which agents neglect the signal and do not invest, occur, in contrast with

the equilibrium predictions. Up cascades, in which agents invest independently of

the signal, occur, but less than in equilibrium.
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1 Introduction

Learning from observing the decisions of others is a pervasive phenomenon in societies.

A large literature on social learning has shown that the process of learning, while, on

average, beneficial, can have some pathological consequences, such as agents herding on a

sub-optimal choice.

The phenomenon has been first illustrated in the seminal work by Banerjee (1992) and

Bikhchandani et al. (1992). They study the extreme case in which agents move in sequence,

one after the other, and observe the entire sequence of predecessors’ actions. In most real-

life situations, however, decision makers only have access to partial information about the

choices of others. For instance, when an entrepreneur has to decide whether to make an

investment (e.g., in a new technology), they can observe the investments already made,

but not the entire sequence of choices; in particular, they do not typically observe the

“non-investments”, that is, all the entrepreneurs who thought about the new technology

but then chose not to invest in it. Similarly, a doctor who is pondering whether to prescribe

a new drug may have data on how many others have already done so, but not how many

considered the option and chose to stick to the old one. In other words, in many situations,

the choice “not to do” is not observable.1

Since the observability of one action only is a common feature of many situations, it is

important to understand how people make decisions in such situations. This is the research

question of this study. Guarino et al. (2011) have answered this question at a theoretical

level. A result of that study is that, in equilibrium, informational cascades (i.e., situations

in which agents make the same decision independently of their private information) only

occur on the observable action. To go back to our examples, it is never the case that an

entrepreneur with positive private information about a new technology would refrain from

investing in it just because no one else has invested before. The intuition for this result

is that, if everyone behaved this way, then the observable action would never be chosen;

as a result, seeing no investment would be completely uninformative, and following the

own private information would be the best response. In this paper, we show an even

stronger result: following one’s own signal when no investments are observed is not only

an equilibrium strategy, it is actually a dominant strategy. While there are no cascades

of non-investments (no “down cascades” in the terminology of Guarino et al., 2011), in

1Even the most celebrated, perhaps passé, example in this literature, the choice of a restaurant, does

not really fit the canonical model: typically, one can observe the number of people already dining in a

restaurant, not the sequence of choices.
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equilibrium, cascades of investments (“up cascades”) occur. The rationale is the same as

in the seminal model of Bikhchandani et al. (1992): when agents observe a sufficiently high

number of investments, their posterior belief on the good state of the world is so high that

investing is the best response independently of the private signal.

After presenting the theoretical results, we move to the core of this work, a series of

controlled experiments in which we implement the model by Guarino et al. (2011) in the

laboratory, varying the group size from small (n = 3) to large (n = 10 and n = 19).

Subjects have to choose between two actions (which here we refer to as investment and

non-investment), on the basis of a private, binary signal and of the number of investments

that have already been made. Subjects have no other information: they do not know

their position in the sequence and, hence, they do not know how many other subjects have

already had the opportunity to invest and have decided not to do so. Subjects’ payoffs are

such that they choose the action that more likely matches one of two states of the world.

Since not knowing the position in the sequence is a crucial ingredient of the model and in

the laboratory the mere passing of time may reveal it, at least to some extent, we introduce

a methodological novelty in the experimental literature on informational cascades: rather

than using the direct-response method, we use the strategy method. We can do so since, in

contrast with experiments in which the sequence is observable, in our set up, the number

of contingencies is sufficiently low.

The first experimental result that we are interested in is whether cascades occur on

the unobservable action. As we said, the absence of down cascades (i.e., cascades on

non-investment) is predicted, not only in equilibrium, but also in dominant strategies.

Moreover, a very robust result presented in most of the previous cascade experiments (see,

e.g., Çelen and Kariv, 2004a, Goeree et al., 2007, and Angrisani et al., 2021) is that human

subjects tend to overweight their private information relative to the public information.

Putting these results together, one could conjecture that down cascades do not occur or

occur very rarely in the laboratory. In other words, a reasonable conjecture is that, when

they see no previous investments, most of the time subjects just follow their signal. The

results of our study only partially align with this conjecture for small groups of subjects

(n = 3 in our laboratory), and do not align for large groups (i.e., 10 or 19). In these

large groups, when observing no investments, subjects, more often than not, choose not to

invest. This suggests that subjects underweight their private signal relative to public infor-

mation. This result, confirmed when we look at the data through the lens of the Quantal

Response Equilibrium (which takes into account the actual behavior of other subjects in
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the laboratory), is in stark contrast with previous results. This is not to say that previous

results were incorrect, but that overweighting of private information is not a general prop-

erty of how human subjects learn from others and from their private information. In our

experiment, it seems as though subjects infer more negative information about the state

of the world from a lack of investments than is theoretically justifiable.

The second result of interest is whether cascades occur on the observable action. It is

important to note that, in most of the previous experiments, by design, the deviation from

equilibrium can only consist in following the others too little. For instance, in the standard

experimental test of Bikhchandani et al. (1992) (see, e.g., the seminal paper of Anderson

and Holt, 1997), theoretically, a cascade occurs as soon as one action outnumbers the

other by two, and even if it outnumbers it by one, neglecting the signal is not necessarily

a deviation from equilibrium. Hence, there is no way in which a subject can engage in

cascade behavior when they should not. In our experiment, instead, an up cascade starts

when a threshold number of investments is reached. This threshold depends on the group

size. In principle, one can therefore observe subjects following others too little (if they

need a larger number of investment to neglect their signal) or too much (if they engage in

cascade behavior even before the threshold is reached). In our data, we find that subjects

engage in up cascade behavior too little: even after the threshold for an up cascade is

reached, the frequency of up cascade behavior is substantially lower than predicted. This

result shows that subjects do overweight their bad signal, in line with previous papers.

The third result relates to the aggregate number of investments and to welfare. In

equilibrium, the asymmetry in observability implies that investments occur more than

50% of the time, and welfare is higher in the good state of the world than in the bad state.

This is intuitive since the partial observability biases decisions in favor of investments, and

this is beneficial in the good state of the world and detrimental in the bad state. These

theoretical results are essentially reversed in the laboratory, due to subjects’ reluctance

to invest when they observe a low level of investments. For instance, for n = 10 and

n = 19, while in the PBE, unconditionally, investments occur almost 60% of the time, in

the laboratory, we observe investments no more than 40% of the time.

These results have implications for the way in which we think about social learning,

not only in economic contexts, but also in contexts that are relevant to political science,

sociology, etc.2 It is also interesting to observe that, while, in many scenarios, one action

2For instance, in political science, social learning models are used to study voting, and are also referred

to in the study of the diffusion of political ideas (see, e.g., Simmons et al., 2006). Yet another example in

which agents only have partial and aggregate information is that of petitions, where agents only know the
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arises naturally as the observable one, there are some important cases where third parties

may have the power to decide what information is provided to agents (we discuss one

example in Section 5). Our experimental results show that one should be cautious in

recommending which action to make observable on the basis of the theoretical results.

In the next subsection, we will briefly survey the related literature. Here we note

that there are various differences between our work and the standard experimental tests

of the Bikhchandani et al. (1992) model that make observing subjects’ behavior in our

experiments interesting.

Firstly, as we noticed above, in the standard experiment, by design, the deviation from

equilibrium can only consist in following the others too little. In our experiments, instead,

we can observe subjects following others too little or too much.

Secondly, the standard experiment allows us to understand the extent to which human

subjects imitate the crowd. In our experiments, we can also observe whether human

subjects are influenced by the lack of observed investments by others.

Thirdly, in the standard experiment, there is a simple rule of thumb that a subject can

apply: act according to the own signal unless there is a majority of at least two, in which

case, follow the majority. In our experiment, one cannot use a simple rule; for instance,

for n = 10, one should follow others’ investment decisions when there are already four

investments, which is a minority action relative to n = 10.

From a methodological viewpoint, we believe this is the first study of a cascade game

using the strategy method. Moreover, with the exception of Goeree et al. (2007), who have

groups of 20 and 40 participants, to the best of our knowledge, this is the only experimental

study about informational cascades with a long sequence of subjects (i.e., 19 subjects).

The remainder of the paper is organized as follows. The next subsection reviews the

literature. Section 2 presents the theoretical analysis and the equilibrium predictions.

Section 3 describes the experiments. Section 4 illustrates the results. Section 5 concludes.

The online Appendix contains the instructions and supplementary material.

1.1 Related literature

Our work builds on the theoretical contribution of Guarino et al. (2011). A closely related

theoretical work is that by Herrera and Hörner (2013): in common with Guarino et al.

(2011), only one action is observed; in contrast with Guarino et al. (2011), agents know

the time at which they make their investment decision and observe past, individual in-

number of people who have already signed.
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vestments, and the time at which these were made (rather than an aggregate statistics).

Specifically, Herrera and Hörner (2013) study partial observability of predecessors’ actions

in a continuous time model with a Poisson arrival of investment opportunities. In this set

up, an agent may not see previous investments not because they are unaware of some of

them (not observing them, as in our framework), but because there were no investment op-

portunities in the past. Although cascades on both actions are possible in equilibrium, the

asymmetry in observability generates an asymmetry in the frequency of the two actions,

as is the case in our model: in equilibrium, the observable action is chosen more frequently

than the other one.

Another work in which, similarly to Herrera and Hörner (2013), some agents randomly

receive the opportunity to invest is the endogenous-timing model of Chamley and Gale

(1994). Also, in that model, there is an asymmetry in the Bayesian inference from invest-

ments and absence of investments, specifically because agents who have the opportunity

to invest may strategically decide to delay the investment.

The theme of partial observability of the predecessors’ actions has also been investigated

from other angles. In an early contribution, Çelen and Kariv (2004b) analyze social learning

when agents only observe their immediate predecessor. Beliefs and actions are cyclical;

eventually, longer and longer periods of uniform behavior are punctuated by rarer and

rarer switches. Çelen and Kariv (2005) test this model experimentally, finding that herding

is not very frequent, actually even less frequent than the theory predicts. Callander and

Hörner (2009) study the case in which agents only observe the total number of predecessors

who have chosen each of the two available options, but not the order in which the choices

have been made. This feature, in addition to agents having signals of different precisions,

implies that, for some parameter values, it is sometimes optimal to herd on the minority

action. Monzon and Rapp (2014) consider the case in which agents are uncertain about

their position in the sequence of decision makers and sample past decisions. They show

that position uncertainty does not have a strong effect on the speed of social learning. In

Larson (2015), instead, agents only have access to a summary statistic about predecessors’

decisions (in a continuous action space). Since agents observing this statistic cannot correct

for the fact that earlier actions influenced later ones, even a small presence of old actions

in the aggregate statistic can imply persistent errors. Social learning can, therefore, be

very slow. Guarino and Jehiel (2013) study social learning with coarse inference and show

that when boundedly rational agents (in the sense of the Analogy Based Expectations

Equilibrium – Jehiel, 2005) make inferences from predecessors in a continuous action space,
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there is a bias to overweight early signals in the sequence: this bias is non existent if

agents only observe the immediate predecessor and increases with the number of observed

predecessors. Angrisani et al. (2021) offer an experimental test of social learning in a

continuous action space like that studied in Guarino and Jehiel (2013).3

2 Theoretical Framework

We consider the model introduced by Guarino et al. (2011) in which n agents choose in

sequence between two options. For convenience, we will refer to this choice as whether to

invest in a project or not. Time is discrete and indexed by i = 1, 2, . . . , n. Each agent

makes their choice only once in the sequence. Agents are numbered according to their

positions: agent i chooses at time i only. The sequence in which agents make their choices

is randomly determined, with all sequences equally likely. An agent’s action space is {0, 1},
and their action is denoted by ai ∈ {0, 1}, where 1 can be interpreted as the decision to

invest and 0 as the decision not to invest. An agent’s payoff, πi, depends on their decision

and on the true state of the world, ω: the project can be bad (ω = 0) or good (ω = 1), and

the two states are equally likely. If ω = 1, an agent receives a payoff of 1 if their action is

1 (i.e., investing in a good project), and a payoff of 0 otherwise; if ω = 0, an agent receives

a payoff of 1 if their action is 0 (i.e., not investing in a bad project). The payoff is thus

πi = ωai + (1− ω)(1− ai). (1)

Each agent i receives a symmetric binary signal, si, about the project, distributed as

follows:

Pr(si = 1 | ω = 1) = Pr(si = 0 | ω = 0) ≡ 0.7. (2)

We assume that, conditional on the project being good or bad, the private signals are

i.i.d.. We refer to si = 1 as a “good signal” and to si = 0 as a “bad signal.”

In addition to private information, agents observe the choices of their predecessors, to

some extent. Specifically, an agent does not know their position in the sequence. They

know the total number of agents before them who have chosen the action aj = 1 (j < i).

While the aggregate number of previous investments is observable, each individual decision

is not, nor is the total number of decisions not to invest. In this sense, we say that the

action aj = 0 is a non-observable action. We denote the total number of agents who

3A critical survey discussing several aspects of social learning theories is Gale (1996). In recent years,

there has been much interest in another form of partial observability, due to agents being connected in

networks. We refer the reader to Cabrales et al. (2016) for a survey.
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have invested before agent i by Ti: agent i is then informed about Ti =
∑i−1

j=1 aj. Their

information set is, therefore, {Ti, si}. Note that the information set does not contain the

position i in the sequence. With a slight abuse of notation, we denote the choice upon

observing {Ti, si} by ai(Ti, si).

2.1 Theoretical predictions

Each agent can infer whether the project is good or bad from their own signal and from their

predecessors’ choices. The question is how agents use private and public information in

equilibrium. As we shall see, two possibilities can arise in the Perfect Bayesian Equilibrium

(PBE): i) the agent follows their own signal; ii) the agent neglects their signal and invests.

We refer to the second case as an “up cascade.” An up cascade happens when the public

information coming from the observation of others’ choices provides sufficient evidence in

favor of the good state of the world to offset even the contradicting, negative information

coming from the private signal. Guarino et al. (2011) show that an up cascade (in which

an agent chooses action 1, i.e., invests, independently of their private signal) occurs as

soon as the aggregate number of observed investments, Ti, has reached a certain threshold

(which depends on the size of the population, n). Instead, a “down cascade,” in which an

agent chooses action 0, that is, does not invest, independently of their private signal, never

occurs in the PBE for any population size, n. We summarise these results in the next

proposition, in which we focus on the cases of n = 3, n = 10, and n = 19, since these are

the group sizes we will use in the experiment.4 Tables 1, 2, and 3 illustrate the theoretical

prediction.

Proposition 1. In the PBE: a(Ti, 1) = 1 for any Ti, that is, an agent with a good signal

chooses to invest for any Ti, independent of the group size, n;

for n = 3, a(Ti, 0) = 0 for Ti < 2, and a(Ti, 0) = 1 for Ti = 2, (i.e., an agent with a bad

signal does not invest unless they observe that 2 predecessors have invested);

for n = 10, a(Ti, 0) = 0 for Ti < 4, and a(Ti, 0) = 1 for Ti ≥ 4, (i.e., an agent with a bad

signal does not invest unless they observe that at least 4 predecessors have invested);

for n = 19 , a(Ti, 0) = 0 for Ti < 7, and a(Ti, 0) = 1 for Ti ≥ 7, (i.e., an agent with a bad

signal does not invest unless they observe that at least 7 predecessors have invested).

An up cascade occurs for the same reason that an informational cascade occurs in the

4We are interested in studying human behavior in small and large groups. We preferred to use n = 19

rather than n = 20 since, for n = 19, the PBE is unique (i.e., there is a unique threshold for the up

cascade), whereas, for n = 20, there are multiple equilibria (see Guarino et al., 2011).
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Table 1: PBE actions for n = 3

Ti = 0 Ti = 1 Ti = 2

si = 0 0 0 1

si = 1 1 1 1

PBE actions for each contingency.

Table 2: PBE actions for n = 10

Ti = 0 Ti = 1 Ti = 2 Ti = 3 Ti = 4 Ti = 5 Ti = 6 Ti = 7 Ti = 8 Ti = 9

si = 0 0 0 0 0 1 1 1 1 1 1

si = 1 1 1 1 1 1 1 1 1 1 1

PBE actions for each contingency.

Table 3: PBE actions for n = 19

Ti = 0 Ti = 1 Ti = 2 Ti = 3 Ti = 4 Ti = 5 Ti = 6 Ti = 7 Ti = 8 Ti = 9

si = 0 0 0 0 0 0 0 0 1 1 1

si = 1 1 1 1 1 1 1 1 1 1 1

Ti = 10 Ti = 11 Ti = 12 Ti = 13 Ti = 14 Ti = 15 Ti = 16 Ti = 17 Ti = 18

si = 0 1 1 1 1 1 1 1 1 1

si = 1 1 1 1 1 1 1 1 1 1

PBE actions for each contingency.

canonical model of social learning of Bikhchandani et al. (1992). Consider, for instance, n =

10: when four or more investments are observed, the posterior probability that the project

is good is higher than 0.5 even if the agent has a bad signal, therefore, the agent chooses to

invest. From that time onwards, all following agents rationally choose to invest, whatever

private signal they observe. Note that, in contrast with Bikhchandani et al. (1992), as

more people invest in an up cascade, agents revise up the probability that the project is

good. This is so since the agent does not know their position in the sequence and Ti +1 is

better news than Ti. The impossibility of a down cascade (a cascade on the unobservable

action — the decision not to invest) is proven by relying on a subtle equilibrium argument.

If a down cascade occurred when Ti = 0, then, in equilibrium, nobody would ever predict

a good project. Hence, Ti = 0 would not reveal any information on the true state of the

world, and agent i would be better off by following their informative signal, si. Since

a monotonicity argument shows that a higher Ti cannot be worse news, Guarino et al.
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(2011) can prove that a down cascade never occurs.5 This equilibrium argument solves an

inference problem that would seem quite complex. For example, consider an agent facing a

“low” value of Ti. One could imagine that, in order to make their decision, agent i should

consider all possible sequences compatible with Ti and attach a probability to each of them.

A low number of investments may arise for two reasons: it may come from the fact that

only a few agents had the opportunity to invest so far, in which case the low value of Ti

should not be considered bad news (and, if on top of this, the agent receives a good signal,

the overall information about the project could be good). Alternatively, a low number of

investments could arise from many agents having had the opportunity to invest but only

a few doing so, in which case the low Ti should be viewed as bad news. This inference

process could be quite complicated. The problem is, instead, solved by just invoking the

equilibrium argument explained above. As we said, while the threshold for the occurrence

of an up cascade depends on the number of agents, n, in the economy, the impossibility of

a down cascade holds for any n.

While Guarino et al. (2011) provide a proof of the PBE, we now prove an even stronger

result: when observing Ti = 0, following the signal is not only a PBE strategy, it is also a

dominant strategy.

Proposition 2. For an agent observing Ti = 0, it is dominant strategy to follow their own

signal, that is, to invest when si = 1 and not to invest when si = 0.

We relegate the proof to the Appendix. Let us consider the intuition for si = 1. From

Proposition 1, we know that, in the PBE, observing Ti = 0 is not sufficiently bad news

that an agent with a good signal does not invest. A fortiori, this remains true in the case

in which agents do not necessarily follow their signal, since the probability that the project

is good, given Ti = 0, is higher in this scenario than in the PBE. Therefore, even if other

agents deviate from the PBE, following si = 1 is still optimal. As for si = 0, it is intuitive

that, as long as agents who observe Ti = 0 invest more frequently with a good signal than

with a bad signal, Ti = 0 is bad news and not investing upon observing a bad signal is

optimal. However, one could notice that, if agents invest more frequently with a bad signal

than with a good signal, then observing Ti = 0 is, actually, good news. We prove that,

even in the most extreme case in which other agents make decisions against their signal,

although Ti = 0 is good news, the best response for an agent who receives si = 0 is not to

invest.

5We refer the reader to that paper for the formal proofs. Similar arguments show that, in the PBE, an

agent observing Ti = 0 cannot engage in an up cascade or go against their signal.
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While following the signal when Ti = 0 is a dominant strategy for any size n of the

population of agents, the profitability of this strategy varies with n. Intuitively, for a low

n, the probability of observing Ti = 0 because the agent is early in the sequence (a case in

which Ti = 0 is not so bad news) is high and the profitability of following the own signal is

high too; for a high n, this probability is instead rather low, and so is the benefit of following

the signal. Formally, note that the likelihood ratio (LR) upon observing {Ti = 0, si = 1}
is equal to:6

Pr(ω = 1 | Ti = 0, si = 1)

Pr(ω = 0 | Ti = 0, si = 1)
=

Pr(Ti = 0 | ω = 1)

Pr(Ti = 0 | ω = 0)

Pr(si = 1 | ω = 1)

Pr(si = 1 | ω = 0)
=

1− (1− 0.7)n

1− 0.7n
. (3)

For n = 3, the ratio is equal to 1.481, whereas it is equal to 1.029 for n = 10 and

to 1.001 for n = 19. Essentially, when they are in a group of 10 or 19 people, an agent

observing a good signal and Ti = 0 has odds close to 1 : 1 on the two states of the world,

that is, their incentives to follow the good signal are low.

To conclude this section, in Tables 4, 5, and 6, we show the likelihood ratios for all

contingencies. Another noteworthy feature of the PBE is that, as n increases, the up

cascade starts when the likelihood ratio is smaller. When n = 3, the cascade occurs for

Ti = 2 and, conditional on a bad signal, the likelihood ratio is 0.7
0.3

= 2.3. Note that this

coincides with the likelihood ratio in an informational cascade in the canonical model of

Bikhchandani et al. (1992). Since, in that model, beliefs are not updated during a cascade,

that means that 2.3 is the likelihood ratio in any cascade in Bikhchandani et al. (1992). For

n = 10, the cascade starts at Ti = 4, and, conditional on a bad signal, the likelihood ratio is

1.55; for n = 19, it starts at Ti = 7, and, conditional on a bad signal, the likelihood ratio is

1.54.7 Overall, the average likelihood ratio during an up cascade (and a bad signal) is 3.48

for n = 10, and 10.74 for n = 19 (recall that, in our model, in contrast with Bikhchandani

et al. (1992), the likelihood ratio is increasing in the number of investments, even in an up

cascade).

In summary, theoretically, cascades can occur on the observable action but not on the

unobservable one. The impossibility of a down cascade is predicted not only in equilibrium

but also in dominant strategies; nevertheless, the incentives to follow the good signal when

6The probabilities are computed as follows:

Pr(Ti = 0|ω = 1)

Pr(Ti = 0|ω = 0)
=

∑n
i=1 Pr(Ti = 0|ω = 1, i) Pr(i|ω = 1)∑n
i=1 Pr(Ti = 0|ω = 0, i) Pr(i|ω = 0)

=

∑n
i=1 Pr(Ti = 0|ω = 1, i)∑n
i=1 Pr(Ti = 0|ω = 0, i)

.

7Asymptotically, for n → ∞, the cascade starts when the likelihood ratio converges to 1 (see Guarino

et al., 2011).
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Table 4: PBE LRs, Pr(ω=1|Ti,si)
Pr(ω=0|Ti,si)

, for n = 3

Ti = 0 Ti = 1 Ti = 2

si = 0 0.272 0.667 2.333

si = 1 1.481 3.630 12.704

Likelihood ratios (LRs) in the PBE for each contingency. An up cascade occurs when LR> 1.

Bold font indicates an up cascade.

Table 5: PBE LRs, Pr(ω=1|Ti,si)
Pr(ω=0|Ti,si)

, for n = 10

Ti = 0 Ti = 1 Ti = 2 Ti = 3 Ti = 4 Ti = 5 Ti = 6 Ti = 7 Ti = 8 Ti = 9

si = 0 0.189 0.216 0.297 0.519 1.545 2.080 2.972 4.527 7.355 12.704

si = 1 1.029 1.175 1.618 2.824 8.413 11.324 16.180 24.645 40.043 69.165

Likelihood ratios (LRs) in the PBE for each contingency. An up cascade occurs when LR> 1.

Bold font indicates an up cascade.

Ti = 0 are high if the group size is small (n = 3) and low when the group size is large

(n = 10 and n = 19). The likelihood ratios, and hence the incentives to choose an action

at odds with the own signal, change during a cascade and are substantially different for

different group sizes, n.

3 The Experiment

3.1 Experimental setup

We implemented the model in the laboratory. In the experimental instructions, we used

the terminology of “predicting a good project” to indicate ai = 1 or “predicting a bad

project,” to indicate ai = 0. We preferred to use a neutral terminology, as opposed to the

expression “investing”, to avoid subjects associating one action to a risky action. For the

reader’s convenience, in the next sections, we will stick to the terminology of investing or

not.

The model poses an obvious implementation challenge. A subject should only be in-

formed of their private signal and of Ti (the total number of predecessors choosing action

aj = 1) but not of their own position in the sequence. In the laboratory, a subject may

infer their own position in the sequence by the mere passing of time since the start of a

round of decision making. Even though positions may be randomly assigned, a subject

being asked to make a decision early in the round would infer that presumably they are

not the last subject; similarly, a subject waiting for some time would presumably infer

that others have already made decisions. To circumvent these issues, we decided to use

12



Table 6: PBE LRs, Pr(ω=1|Ti,si)
Pr(ω=0|Ti,si)

, for n = 19

Ti = 0 Ti = 1 Ti = 2 Ti = 3 Ti = 4 Ti = 5 Ti = 6 Ti = 7 Ti = 8 Ti = 9

si = 0 0.184 0.186 0.193 0.212 0.256 0.349 0.549 1.538 1.900 2.427

si = 1 1.001 1.011 1.049 1.154 1.393 1.900 2.988 8.372 10.347 13.215

Ti = 10 Ti = 11 Ti = 12 Ti = 13 Ti = 14 Ti = 15 Ti = 16 Ti = 17 Ti = 18

si = 0 3.218 4.450 6.442 9.794 15.655 26.284 46.227 84.795 161.384

si = 1 17.521 24.227 35.075 53.324 85.231 143.103 251.682 461.662 878.647

Likelihood ratios (LRs) in the PBE for each contingency. An up cascade occurs when LR> 1.

Bold font indicates an up cascade.

the strategy method. We asked subjects to make decisions for each possible situation (i.e.,

each possible {Ti, si}) they may face, like in Tables 1, 2, and 3. The strategy method has

other advantages. First, we collect many more data points for any given couple {Ti, si}:
this increases the precision of the estimates. Second, we collect many more data points for

the specific cases {Ti, si} that are more relevant for our study, e.g., those in which there

is an up cascade and the signal is bad. Third, we can observe an informational cascade

without relying on assumptions about what the subject would have done with a different

signal. With the direct-response method, used in previous experimental studies of social

learning, one only observes the decision conditional on the signal that a subject receives.

When the signal is in agreement with the past history of actions, one cannot infer whether

the subject is following their signal or the past actions, since they agree. When the signal

is at odds with the history of past actions and the subject follows past actions, this is in-

terpreted as a cascade, based on the assumption that, a fortiori, the subject would choose

the same action with the other signal. In our experiment, we observe the chosen action

for each Ti and both signals. We can use the strategy method since, in our experiment,

the number of possible contingencies is relatively small, whereas in experiments in which

subjects observe an entire sequence, there are too many possible histories of actions to

even consider the strategy method.8

3.2 Procedures

We ran the experiment in the Experimental Laboratory for Finance and Economics (ELFE)

at the Department of Economics at University College London (UCL).9 The subject pool

mainly consisted of undergraduate students in all disciplines at UCL. They had no previous

8Cipriani and Guarino (2009) consider a hybrid method, in which subjects observe the sequence and

make a decision conditional on each signal.
9This is the new name of the laboratory, formerly known as ELSE Laboratory.
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experience with this experiment. In total, we ran six sessions per treatment for n = 10

and n = 19, and seven for n = 3, for a total of 195 subjects. Each subject participated in

one session only.

The sessions started with written instructions (available in the online Appendix) given

to all subjects. After reading the instructions, subjects watched a pre-recorded presenta-

tion, recapping the main aspects of the experiment. Subjects could ask clarifying questions,

which we answered privately. Finally, subjects had to answer a series of multiple-choice

questions about the procedures of the experiment.10 The experiment was programmed and

conducted with the software z-Tree (Fischbacher, 2007).

In each session, subjects played the game for 15 rounds.11 We now describe the proce-

dures for each round:

1. The computer randomly determined whether the state of the world (the “project”)

was good or bad with equal probability. Participants were not informed of the re-

alization. They knew, however, that they would receive informative signals about

whether the project was good or bad: if the project was good, a participant would

receive a “green ball” with probability 0.7 and a “red ball” with probability 0.3 (a

draw from a “virtual urn” containing 70 green and 30 red balls); if the project was

bad, the probabilities were inverted. Clearly, a green ball was equivalent to si = 1

and a red ball to si = 0.

2. Before being informed about their ball color, subjects had to choose whether to invest

or not (decisions coded as 1 and 0, respectively) for each possible couple Ti and si

(for a total of 2n decisions). They submitted their strategies by clicking on radio

buttons in a table similar to Tables 1, 2, and 3).12

3. Once all participants had submitted their strategy, the computer randomly deter-

mined each subject’s position in the sequence and their private signal. Using sub-

jects’ stated strategies, the computer program determined the contingency (Ti, si)

that was actually relevant for each subject in the realized sequence.

10The PowerPoint presentation with pre-recorded voice and the questionnaire are available upon request.

When a subject answered the same question incorrectly twice, they were not allowed to proceed to the

next question before an experimenter discussed the issue with them. This rarely happened.
11For n = 3, subjects played the game for a total of 30 rounds since completing each round took

substantially less time. As we will see, there is almost no difference in the way that subjects played the

first 15 rounds and the last 15 rounds.
12Recall that, as explained above, in the experimental instructions, we used the terminology of “pre-

dicting a good project” to indicate ai = 1 or “predicting a bad project” to indicate ai = 0.
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4. Subjects received feedback on their actual position in the realized sequence, their

values of si and Ti as well as whether the project was good or bad, and the result-

ing payoff. Furthermore, since subjects made many decisions but their payoff only

depended on one of them, we gave them extra feedback by telling them the average

payoff they would have earned for any of the other positions in the sequence, had

they been selected for that position.

5. After subjects had observed the feedback screen, they could click on an arrow to

move to the next round.

Subjects accrued £7 for each correct decision. The final payment was the amount

accrued in three randomly selected rounds (one from the first 5 rounds, one from rounds

6 − 10 and one from the last 5 rounds), plus a show up fee of £5. Subjects were paid in

private immediately after the experiment. The average payment per subject was £18.

4 Results

4.1 Investments and cascade behavior

We start our presentation of the results with the investment rates observed in the labo-

ratory. This is the most direct test of Proposition 1 and Proposition 2. As we said, an

advantage of the strategy method is that we observe subjects’ decisions conditional on

both signals. A subject who chooses the same action conditional on either signal is said

to be engaging in cascade behavior. In previous experiments, researchers have used the

direct-response method rather than the strategy method, and, typically, have only looked

at the decisions taken when the signal contradicts the majority action, since when the sig-

nal confirms the majority action, following it and being in agreement with the majority are

equivalent. For comparability with previous experiments, when we discuss informational

cascades, we also consider the actions taken in an up cascade, as classified according to

the PBE, upon receiving a bad signal. When a subject invests with a bad signal in an up

cascade, we say that they engage in herd behavior.

Definition 1. A subject engages in up (down) cascade behavior when they choose to invest

(not to invest) conditional on either signal. A subject engages in herd behavior when they

invest conditional on si = 0 and, according to the PBE, they are in an up cascade.

Tables 7, 8, and 9 show the average frequencies of investment for the different contingen-

cies that subjects can find themselves in. For all three treatments, investment frequencies
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show some clear patterns. They are monotonically increasing in Ti; moreover, for a given

Ti, they are always higher for a good signal than for a bad signal.13

When n = 3, behavior is relatively close to the PBE predictions (Table 7).14 We observe

investment in 71% of the cases when subjects observe no previous investment (Ti = 0) and

the signal is good; this frequency becomes 94% for Ti = 1 and 95% for Ti = 2; that is,

in a large majority of cases, subjects follow the signal, in agreement with the PBE. When

Ti = 2, a situation of up cascade, we observe that in 82% of the cases subjects engage

in cascade behavior (see Table 10). For comparison with previous experiments, note also

that subjects engage in herd behavior (investing after observing si = 0 and Ti = 2) in 86%

of the cases (see Table 7). In only 4% of the cases, they do not respect monotonicity and

invest conditional on a bad signal but do not invest conditional on a good signal. Note that

86% is a significant jump from the frequency of 13% observed when Ti = 1 (and subjects

are not in a cascade). The result is even more striking if one notices that in the same

situation but with a good signal subjects invest in 95% (rather than in 100%) of the cases.

Table 7: Frequencies of investment for n = 3

Ti = 0 Ti = 1 Ti = 2

si = 0 0.09 0.13 0.86

si = 1 0.71 0.94 0.95

Empirical frequencies of investment (ai = 1). The bold font indicates that, theoretically, a

subject is in an up cascade.

Table 8: Frequencies of investment for n = 10

Ti = 0 Ti = 1 Ti = 2 Ti = 3 Ti = 4 Ti = 5 Ti = 6 Ti = 7 Ti = 8 Ti = 9

si = 0 0.15 0.15 0.18 0.33 0.53 0.71 0.80 0.85 0.86 0.88

si = 1 0.46 0.46 0.60 0.78 0.89 0.92 0.95 0.95 0.95 0.97

Empirical frequencies of investment (ai = 1). The bold font indicates that, theoretically, a

subject is in an up cascade.

When n = 10 and n = 19, the adherence to the PBE predictions is clearly less strong

(Tables 8 and 9). The cases in which subjects have more difficulties in choosing the

13The monotonicity is only slightly violated for n = 19 when Ti = 1 and si = 0.
14In the Appendix, we also show the frequencies of investments for the first 15 rounds only (see Table

16). The results are almost unchanged.
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Table 9: Frequencies of investment for n = 19

Ti = 0 Ti = 1 Ti = 2 Ti = 3 Ti = 4 Ti = 5 Ti = 6 Ti = 7 Ti = 8 Ti = 9

si = 0 0.09 0.08 0.09 0.13 0.22 0.27 0.34 0.44 0.50 0.58

si = 1 0.41 0.41 0.49 0.61 0.67 0.74 0.77 0.83 0.84 0.87

Ti = 10 Ti = 11 Ti = 12 Ti = 13 Ti = 14 Ti = 15 Ti = 16 Ti = 17 Ti = 18

si = 0 0.65 0.71 0.75 0.78 0.80 0.82 0.82 0.83 0.83

si = 1 0.88 0.91 0.92 0.91 0.92 0.93 0.94 0.93 0.94

Empirical frequencies of investment (ai = 1). The bold font indicates that, theoretically, a

subject is in an up cascade.

PBE action are those in which they receive a good signal and observe a low number of

investments. For n = 10, this is particularly pronounced for Ti ≤ 2. In such cases, on

average, subjects choose the PBE decision (to invest) in approximately 49% of the cases.15

Note, in particular, that for Ti = 0 and a good signal, the investment rate, rather than

being 100%, is 46%. The PBE predicts an absence of down cascades, but for Ti = 0, we

do observe 51% of down cascade behavior (subjects choose not to invest conditional on

either signals). As for up cascades, recall that, theoretically, they occur for Ti ≥ 4 when

n = 10. In the laboratory, when Ti ≥ 4, cascade behavior occurs in 64% of the cases

(see Table 10). Subjects, on average, engage in herd behavior in 66% of the cases.16 Herd

behaviour becomes more and more frequent when the evidence in favor of the good project

becomes stronger, that is, for higher values of Ti. In particular, as illustrated in Table 8,

for Ti = 4 (when, theoretically, subjects are in a cascade) and upon observing a bad signal,

the frequency of investments is 53%, jumping from the 33% observed when Ti = 3 (and,

theoretically, subjects are not in a cascade). When Ti = 5, the frequency goes up to 71%.

The frequency is then monotonically increasing up to 88% for Ti = 9.

For n = 19, observe from Table 9 that, for Ti = 0 and a good signal, the investment

rate, rather than being 100% (as in the PBE), is 41%, confirming that subjects in the

laboratory are not that prone to invest. Indeed, when Ti = 0, subjects engage in down

cascade behavior in 54% of the cases, whereas there are no down cascades in the PBE. The

15This and the other average numbers in this analysis are computed considering the probability of being

in each contingency in the table, given the actual frequency of decisions.
16The difference between 64% and 66% is due to a small fraction of cases in which subjects did not

respect monotonicity and did not invest with a good signal. For comparison, experiments aimed to test

the Bikhchandani et al. (1992) model (in which there is symmetry between the two actions) with a similar

number of subjects per session typically report a frequency of herd behavior in the order of 65% − 75%

(see, e.g., Weizsäcker, 2010). Our results are thus in line with these experiments.
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investment rate, conditional on a good signal, remains low (at 41%) for Ti = 1, approaches

50% for Ti = 2, and then increases monotonically to reach almost 95%.

As for up cascades, in the PBE, they start at Ti = 7. In the experiment, we observe

cascade behavior in 51% of the cases (see Table 10). Subjects need to observe Ti = 8 to

choose to invest at least 50% of the times upon receiving a bad signal (see Table 9). On

average, herd behavior, monotonically increasing with Ti, occurs in 56% of the up-cascade

cases.

We summarize our findings in the next result:

Result 1. Decisions in the laboratory are relatively close to the PBE for n = 3, and

deviate more from it for n = 10 and n = 19. In particular, in these larger groups, we

observe less up cascade behavior than in the PBE; moreover, while in the PBE, there are

no down cascades, we do observe that for low values of Ti, frequently subjects do engage in

down cascade behavior.

Table 10: Frequencies of up cascade behavior and herd behavior.

n = 3 n = 10 n = 19

Herd behavior 0.86 0.66 0.55

Up cascade behavior 0.82 0.64 0.51

The table refers to situations of up cascade according to the PBE, that is, Ti = 2 for n = 3,

Ti ≥ 4 for n = 10, and Ti ≥ 7 for n = 19. Subjects engage in herd behavior if, in such

situations, they invest conditional on the bad signal. Up cascade behavior occurs if subjects

invest conditional on both signals. The table shows the frequencies of herd behavior and up-

cascade behavior in the three treatments.

4.2 Incentives and best responses

In Section 2.1, we have proven that following the signal is a dominant strategy (Proposition

2). Therefore, the down cascades that we have documented above cannot be rationalized

by best responses to other subjects’ behavior. Nevertheless, we have also shown that, in

the PBE, the incentive to choose one action versus the other changes substantially with

the number of participants, n. For instance, for Ti = 0 and si = 1, the likelihood ratio goes

from 1.481 for n = 3 to 1.029 for n = 10 and to 1.001 for n = 19. In the experiment, the

percentage of investment for Ti = 0 and si = 1 goes down as the group size, n, increases.

We have also noticed that, theoretically, for any given n, the likelihood ratio increases as

Ti increases, even in an up cascade. In the experiment, we do observe that, for any given

n, as Ti increases, so does the investment rate.
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These considerations already suggest that incentives may play a role. However, in the

laboratory, subjects made decisions sometimes not in line with the PBE, which changes

the incentives. It is, therefore, worth looking at the empirical likelihood ratios, that is, the

likelihood ratios computed using the actual frequencies of Ti investments that occurred in

the laboratory, Fr(Ti | ω):17

LR(Ti, si) =
Pr(ω = 1 | Ti, si)

Pr(ω = 0 | Ti, si)
=

Fr(Ti | ω = 1)

Fr(Ti | ω = 0)

Pr(si | ω = 1)

Pr(si | ω = 0)
. (4)

The ultimate goal of this analysis is to understand subjects’ behavior considering the

actual incentives in the laboratory. Tables 11, 12, and 13 report the likelihood ratios for

the three treatments. They are the empirical counterparts of Tables 4, 5, and 6. There are

four interesting considerations to make.

First, for Ti = 0, the likelihood ratios are higher than in the PBE, for all n. For

example, for n = 19 and si = 1, the likelihood ratio based on the empirical frequencies

of investment is 1.41, instead of 1.001 for the PBE. This means that following the signal

and investing upon observing Ti = 0 and si = 1 was more profitable in expectation in the

laboratory than in the PBE. Intuitively, since subjects in the laboratory do not always

invest after observing Ti = 0 and si = 1, the observation of no previous investments is not

as bad news as in the PBE: observing no previous investment may simply be due to other

subjects receiving the good signal and nevertheless deciding not to invest.

Second, for n = 3, the likelihood ratios for Ti = 1 and Ti = 2 are lower than in the

PBE. Intuitively, since subjects make mistakes, by sometimes not investing after observing

Ti = 0 and a good signal and by sometimes investing after observing Ti = 0 and a bad

signal, a “high” number of observed investments (Ti = 1 or 2 for n = 3) is less indicative

of a good state of the world. Note that, despite this difference between PBE and empirical

likelihood ratios, subjects should still follow their signal except for Ti = 2, when it is still

the case that they should engage in up-cascade behavior. The best responses remain the

same as in the PBE since, whenever the PBE likelihood ratio is greater (less) than 1, so is

the empirical likelihood ratio.

Third, for n = 10, similarly to n = 3, for “high” values of Ti (i.e., Ti ≥ 4), the likelihood

ratios are lower than in the PBE. A high number of observed investments is less indicative

17The frequencies are computed as follows:

Fr(Ti|ω = 1)

Fr(Ti|ω = 0)
=

∑n
i=1 Fr(Ti|ω = 1, i) Pr(i|ω = 1)∑n
i=1 Fr(Ti|ω = 0, i) Pr(i|ω = 0)

=

∑n
i=1 Fr(Ti|ω = 1, i)∑n
i=1 Fr(Ti|ω = 0, i)

.
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of the good state of the world, given that subjects make mistakes and do not always follow

the signal when they face a low value of Ti. In other words, a high number of observed

investments (relative to n) is not as good news as in the PBE. Note, in particular, that,

conditional on a bad signal, the likelihood ratio becomes greater than 1 for Ti = 5, rather

than for Ti = 4 as in the PBE. In other words, based on behavior in the laboratory, for a

subject with a bad signal, it would be optimal to invest starting at Ti = 5 rather than at

Ti = 4.

Fourth, for n = 10 and n = 19, for low values of Ti, the empirical likelihood ratios

are greater than the PBE ones. As we have already mentioned in our first observation,

subjects not investing in a large proportion of cases when Ti is low implies that a low value

of Ti is not as bad news as in the PBE: it may simply be due to subjects not investing

despite a good signal. Given that subjects have a low propensity to invest for low values

of Ti, even a relatively low value of Ti may actually be quite strong evidence in favor of the

good state of the world. Interestingly, for n = 19, the evidence in favor of the good state of

the world is already sufficiently high for Ti = 6 that subjects should engage in up-cascade

behavior, that is, invest despite a bad signal. In other words, given the behavior in the

laboratory, for a subject, it would be optimal to engage in up-cascade behavior already for

a lower value of Ti (in contrast to n = 10).

In sum, in the laboratory where subjects made decisions sometimes not in line with the

PBE, low values of observed investments (relative to n) are not as bad news as in the PBE,

and high values of observed investments are not as good news as in the PBE. Specifically,

we have found the following result:

Result 2. For n = 3, the best responses based on the empirical likelihood ratios coincide

with the best responses in the PBE. For n = 10, given the empirical likelihood ratios, an

up cascade should start later than in the PBE, and for n = 19, an up cascade should start

earlier. For any n, not investing when Ti = 0 is more costly empirically than in the PBE.

Table 11: Empirical LRs Pr(ω=1|Ti,si)
Pr(ω=0|Ti,si)

for n = 3

Ti = 0 Ti = 1 Ti = 2

si = 0 0.324 0.619 1.540

si = 1 1.764 3.372 8.387

Empirical likelihood ratios (LRs) for each contingency.
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Table 12: Empirical LRs Pr(ω=1|Ti,si)
Pr(ω=0|Ti,si)

for n = 10

Ti = 0 Ti = 1 Ti = 2 Ti = 3 Ti = 4 Ti = 5 Ti = 6 Ti = 7 Ti = 8 Ti = 9

si = 0 0.299 0.357 0.454 0.639 0.902 1.217 1.555 1.981 2.531 3.309

si = 1 1.630 1.945 2.470 3.477 4.911 6.628 8.467 10.784 13.782 18.015

Empirical likelihood ratios (LRs) for each contingency.

Table 13: Empirical LRs Pr(ω=1|Ti,si)
Pr(ω=0|Ti,si)

for n = 19

Ti = 0 Ti = 1 Ti = 2 Ti = 3 Ti = 4 Ti = 5 Ti = 6 Ti = 7 Ti = 8 Ti = 9

si = 0 0.259 0.273 0.325 0.413 0.578 0.762 1.045 1.427 1.930 2.595

si = 1 1.409 1.488 1.770 2.250 3.149 4.150 5.691 7.771 10.509 14.131

Ti = 10 Ti = 11 Ti = 12 Ti = 13 Ti = 14 Ti = 15 Ti = 16 Ti = 17 Ti = 18

si = 0 3.493 4.623 6.132 8.188 10.846 14.510 19.536 26.704 36.637

si = 1 19.019 25.169 33.383 44.578 59.050 78.997 106.362 145.386 199.468

Empirical likelihood ratios (LRs) for each contingency.

4.3 Quantal Response Equilibrium

To understand better the role of incentives in different contingencies and treatments, and

whether there are other biases in the decision-making process, we now use the previous

analysis to look at our data through the lens of the Quantal Response Equilibrium (QRE).

As we noticed in the previous section, one characteristic common to all treatments is that

the investment rate increases with the likelihood ratio. This is equivalent to saying that

the higher the expected payoff from one action, the higher the frequency with which that

action was chosen. This is also a characteristic of the QRE, in which the likelihood of a

mistake is inversely related to its cost. Analyzing our data through the lens of the QRE

seems, therefore, a natural way to shed more light on our results.

Compared to the estimation of a logit QRE for the basic informational cascade model

of Bikhchandani et al. (1992), the estimation for our model presents some challenges.

In a model in which agents know their position in the sequence, the likelihood function

can be derived in a simple recursive way. Indeed, the probability of the first choice only

depends on the logistic precision parameter and on the subject’s signal. The probability

of the second choice can be written as a function of this parameter, of the subject’s signal,

and of the first choice. All subsequent probabilities can be written as a function of the

precision parameter, of the subject’s own signal, and of the predecessors’ choices. Under

the assumption of rational expectations on the predecessors error rates, which is part of

the equilibrium concept, it is therefore relatively straightforward to compute the likelihood
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function for an entire sequence of decisions. Assuming independence across sequences, one

can then write and estimate the likelihood for all sequences observed in the laboratory.

This is the standard “equilibrium correspondence approach to estimation” (Goeree et al.,

2016). Note that, since each decision maker acts as in an individual decision-making

set up (with informational externalities on the subsequent agents), the estimation of the

precision parameter (and any other parameter of an enriched model) can be obtained

without searching for a fixed point, which highly simplifies the analysis.

In our model, things are more complicated. To estimate the error rate of subjects

observing, e.g., Ti = 0, one needs to know the subjects’ belief for Ti = 0; this in turn

depends on their error rate when they observe Ti = 0. Essentially, this means finding

a fixed point. This is a complex problem when there are as many as 19 subjects who

play the game. The problem becomes bigger for higher values of Ti, since the logit best

response also depends on the belief about error rates for lower values of Ti. To tackle this

issue, instead of using the equilibrium correspondence approach to estimation, we use the

“empirical payoff approach” (Goeree et al., 2016). This consists of using the empirical

expected payoffs, as implicitly described above by our likelihood ratios, and assuming that

each subject’s choice probability is a logit response to the empirical expected payoffs of

different actions:18

Pr(ai = 1|Ti = j, si) =
1

1 + exp(λ(1− 2πsi
i (pj))

, (5)

where pj = Pr(ω = 1|Ti = j) is the belief after observing j investments and before receiving

the signal, and πsi
i (pj) is the expected payoff from choosing ai = 1 given the belief pj and

the signal si. In this expression, the belief of subjects observing Ti = j is computed on the

basis of the actual frequencies observed in the laboratory (as computed in expression (4)).

We refer the reader to the Appendix for a detailed illustration of the estimation method,

and here we only report the results. In Panel A of Table 14, we show the precision parameter

λ for the different group sizes. The precision parameter is decreasing in the group size n,

indicating that, even after taking actual incentives into account, behavior differed across

treatments. Subjects’ behavior deviated more from rationality in larger groups. Note also

that, for n = 3 and n = 10, λ, estimated separately for si = 0 and si = 1, is lower for si = 1,

presumably reflecting the low frequency of investment, in particular, for low values of Ti.

18As observed by Goeree et al. (2016, p. 156), “In the limit, as the number of observations goes to infinity,

and under the maintained hypothesis that all the data are generated by the same logit equilibrium, the

empirical frequencies in the data will be exactly equal to the choice probabilities of the logit equilibrium,

and the empirical expected payoff function will be exactly the expected payoffs in equilibrium.”

22



For n = 19, the values of λ conditional on each signal (as well as the overall value) are the

lowest among the three treatments, reflecting the frequent occurrence of down cascades for

low values of Ti and the relatively low occurrence of up-cascade behavior for high values

of Ti. For comparison, remember that Goeree et al. (2007, p. 753) obtain λ = 4.4 for their

group of 20 participants and a precision of the signal similar to ours (q = 0.66 in their

study versus q = 0.7 in ours).

Result 3. The precision parameter in the logit QRE model is decreasing with n, indicating

that, after taking actual incentives in the laboratory into account, subjects’ deviations from

full rationality are increasing in group size, n.

Panel B of Table 14 presents the estimates for an enriched model, in which we also

allow for the possibility that subjects underweight or overweight their private signal:

Pr(ω = 1|Ti = j, si = 1) =
qαpj

qαpj + (1− q)α(1− pj)
, (6)

Pr(ω = 1|Ti = j, si = 0) =
(1− q)αpj

(1− q)αpj + qα(1− pj)
. (7)

A value of the parameter α greater than 1 indicates overweighting of the private informa-

tion relative to the information contained in the publicly observable number of investments

Ti. Similarly, a value less than 1 indicates underweighting of private information relative

to public information. A common result of the experimental literature on informational

cascades is that subjects overweight their signal (see, e.g., Çelen and Kariv, 2004a, Goeree

et al., 2007, and Angrisani et al., 2021).19 Our results are quite different. For n = 3,

overall α = 0.88, while for n = 10, overall α = 0.61. For both group sizes, α is lower for

si = 1 than for si = 0. In other words, subjects underweight the signal, in particular, the

good signal. For n = 19, subjects underweight the good signal (α = 0.28) and overweight

the bad signal. Overall, our results show that, in many cases, subjects in the laboratory

underweight their signal relative to the public information, in sharp contrast with previous

results. It seems, therefore, that overweighting private signal in social learning is not a

universal characteristic of human behavior, rather it is context specific. In contexts in

which all actions, and their timing, are observable (the typical set up studies in of previ-

ous experiments) subjects seem to attribute an error rate to predecessors’ decisions, which

19In a recent paper, De Filippis et al. (2022) show, in the context of a continuous action space experiment,

that the overweighting of private information occurs when it contradicts the public information, but not

when it confirms it.
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implies that the history of past decisions carries less information than in the PBE. In

our experiment, instead, particularly when the group size is large, subjects consider a low

number of investments as more informative of a bad state of the world than it actually is,

with the result that they seem to put a very low weight on their signal (relative to public

information).

Result 4. According to our logit QRE model, subjects underweight their good signal, in

contrast with previous experimental results in set ups in which both actions are observable.

This shows that overweighting of private information is not a general characteristic of

human behavior in social learning but depends on the information structure.

Table 14: QRE parameter estimates
Panel A Panel B

λ λ, α

Overall si = 0 si = 1 Overall si = 0 si = 1

n = 3 4.941 6.473 4.066 5.314, 0.880 6.610, 0.932 4.405, 0.882

(s.e.) (0.214) (0.282) (0.190) (0.237, 0.021) (0.268, 0.024) (0.319, 0.058)

n = 10 3.113 4.026 2.700 3.582, 0.611 4.074, 0.815 4.342, 0.220

(s.e.) (0.078) (0.139) (0.074) (0.105, 0.015) (0.139, 0.021) (0.172, 0.023)

n = 19 2.061 1.930 2.166 2.025, 1.412 2.275, 1.895 2.607, 0.283

(s.e.) (0.046) (0.064) (0.047) (0.045, 0.044) (0.059, 0.045) (0.062, 0.033)

Panel A shows the estimates for the precision parameter (λ) in the logit QRE model. Panel

B shows the estimates for the precision parameter (λ) and the confidence parameter (α) in an

enriched logit QRE model that allows for overconfidence in one’s own private signal. Standard

errors (s.e.) are estimated by bootstrapping with 200 replications.

4.4 Aggregate investments, welfare, and learning

To conclude, we now want to understand the implications of subjects’ behavior in the

laboratory in terms of aggregate investments, welfare, and learning.

An important prediction of the model is that, unconditionally, the overall fraction of

investments (the observable action) is higher than 50%. Conditionally on each state of

the world, there are more investments than in the standard informational cascade model

(Bikhchandani et al., 1992) in which both actions are observable (and states and signals

are symmetric). This is due to the absence of down cascades and the occurrence of up

cascades. Table 15 reports the aggregate investment frequencies predicted by the PBE, as

well as those observed in the laboratory. In stark contrast with the PBE prediction, the
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total frequency of investments is actually less than 50%, and decreasing in the group size,

n. In other words, it is the unobservable action that is chosen more frequently.

Table 15: PBE and empirical frequencies of investment and welfare
PBE n = 3 n = 10 n = 19

Investment frequencies

ω = 1 0.75 0.83 0.84

ω = 0 0.32 0.35 0.34

Overall 0.54 0.59 0.59

Welfare

Average Payoff 0.72 0.74 0.75

Data n = 3 n = 10 n = 19

Investment frequencies

ω = 1 0.63 0.51 0.49

ω = 0 0.32 0.30 0.24

Overall 0.47 0.40 0.37

Welfare

Average Payoff 0.66 0.61 0.63

Theoretical and empirical frequencies of investment across treatments. The overall investment

frequencies are computed using the theoretical probabilities (50%) of the states of the world.

Welfare is measured as the payoff that, on average, subjects receive for each action in the

experiment.

Since subjects receive a payoff of 1 if they choose an action matching the state of the

world and 0 otherwise, a measure of welfare is given by the frequency with which the action

matches the state. This coincides with the average payoff per action that subjects receive.

Overall, in the PBE, welfare is increasing in the group size, since a higher frequency of up

cascades in larger groups, on average, helps to make correct decisions. In the laboratory,

instead, welfare is actually lower the larger the group, since deviations from equilibrium

increase with the group size. Moreover, in the PBE, welfare is higher in the state ω = 1

than in ω = 0. This is intuitive since the occurrence of up cascades implies a higher

probability of making the correct (wrong) choice in the good (bad) state of the world. In

the laboratory, since subjects do not always engage in up cascade behavior and sometimes

engage in down cascade behavior, the welfare loss compared to the PBE benchmark is

much higher in the state ω = 1 than in ω = 0. As a result, welfare is actually higher in

the bad than in the good state of the world.
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Result 5. In the PBE, unconditionally, investments (the observable action) occur in more

than 50% of the cases. In contrast, in the data, overall, the unobservable action occurs

more often than the observable one.

Result 6. In the PBE, welfare is higher in the good state of the world and increases with

group size. In contrast, in the data, welfare is higher in the bad state of the world and

decreases with group size.

Finally, let us consider learning in the laboratory. Even if subjects had behaved as in

the PBE, in our experiment, the state of the world would have not been revealed with

probability one. The question is how much is learned in the experiment compared to the

PBE benchmark. To this aim, we compute the distribution of beliefs after all n subjects

have made their choices. Given the investment rates in Tables 4, 5, and 6, we compute the

distribution of PBE likelihood ratios after time n, that is, after the n agents have made

their decisions. Similarly, given the investment rates in Tables 11, 12, and 13, we compute

the distribution of empirical likelihood ratios after time n. Figure 1 reports the results,

expressed, for clarity of exposition, as the distribution of belief that the state is ω = 1.20

In the experiment, the frequency of investments is different from the PBE and, as we

discussed, due to noise, the informativeness of the number of investments is lower: this

determines the difference between the PBE and the empirical distributions. As one can

see, this difference becomes greater as n increases, which reflects both the closer adherence

to the PBE in smaller groups and the fact that, over time, differences are cumulative. More

importantly, the results are very different conditional on the state of the world. When the

project is good, learning is much slower in the laboratory than in the PBE. For instance,

for n = 19, the average likelihood ratio at the end of the experiment is 10.72, which

is equivalent to saying that the probability that the project is good is 91%; in the PBE,

instead, it is 171.3, equivalent to a probability that the project is good of 99%. In contrast,

when the project is bad, the likelihood ratio is lower in the laboratory than in the PBE.

This means that the belief is closer to the realized state of the world in the laboratory

than in theory. For instance, for n = 19, the average likelihood ratio at the end of the

experiment is 2.5647, which is equivalent to saying that the belief on the project being

good is 72%; in the PBE, instead it is 6.0617 which is equivalent to saying that the belief

on the project being good is 86%.

Result 7. In the experiment, subjects learn the realized state of the world less accurately

than in the PBE when it is good and more accurately than in the PBE when it is bad.

20From Pr(ω=1|Ti)
Pr(ω=0|Ti)

= L, one can immediately derive that Pr(ω = 1|Ti) =
L

1+L .
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Figure 1: Distribution of beliefs after all subjects acted

Each of the six panels in the figure refers to one treatment and one state of the world. In each panel, we show the distribution

of beliefs (Pr(ω = 1)) after all subjects have made their decisions. The dashed line indicates the average of the distribution.

The red histogram refers to the PBE while the blue histogram refers to the experimental data. For instance, consider the

panel where ω = 1 and n = 3; in the PBE, in 78% of the cases, there are either 2 or 3 investments by the three subjects,

with the result that the belief is 0.85; in 19% of the cases, there is 1 investment with the result that the belief is 0.61, and

in the remaining 3% of the cases, no investments occur with a resulting belief of 0.39.

5 Conclusion

We have studied how human subjects learn from others in social learning experiments in

which, while the decision “to do” (e.g., to invest) is observable, the decision “not to do”

(e.g., not to invest) is unobservable. In particular, in our experiments, subjects, in sequence,

receive a private signal and only observe the aggregate number of previous investments.

Taken as a test of existing theories, our results are not very supportive of the equilibrium

predictions, in particular when subjects choose in large groups (e.g., n = 10 and n = 19).
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Under the conditions studied by Guarino et al. (2011), subjects in the laboratory are

often unwilling to invest even with a good signal when they observe no or few previous

investments, in clear contrast with the theory; at the same time, they engage in up-cascade

behavior (i.e., investing with a bad signal after observing a sufficiently high number of

previous investments) less than theoretically predicted. It is important to remark that

subjects’ reluctance to invest despite a good signal means they are actually underweighting

their good private information relative to the public information conveyed by the lack (or

the paucity) of previous investments. At the same time, the lower frequency of up cascades

indicates that subjects overweight their bad signal relative to the information conveyed by

a large number of investments. While overweighting private information is a standard

result in social learning experiments, our work shows that, in more complex situations

(in our case, arising from the asymmetry in the observability of actions), subjects can

be mistaken, compared to the Bayesian benchmark, in both directions of overweighting

and underweighting private information. Since these more complex situations are likely to

arise in many real economic and social decision-making contexts, our experiment indicates

that one should be careful in expecting human subjects to put always too much weight on

their private information. This also means that one should not necessarily expect a lower

tendency to imitate others than predicted by theories of rational social learning.

These deviations from equilibrium have important implications for aggregate invest-

ments and welfare. While according to the theory, the non observability of one action

means that investments occur in more than 50% of the cases, in the laboratory, the result

is actually reversed. In theory, welfare is higher than in a standard situation in which both

decisions are observable (like in Bikhchandani et al., 1992) when the state of the world is

good (i.e., the investment is good). In the laboratory, welfare is higher in the bad state of

the world.

While these results are relevant in evaluating the theory in a positive perspective, they

also have some interesting normative implications. While in many scenarios one action

arises naturally as the observable one, there are some important cases where third parties

may have the power to decide what kind of information is provided to agents. An example

is the disclosure policy of a health agency. Consider a health agency that must decide

how to disclose information on the adoption of a new treatment: one possibility is to

reveal information on how many doctors have already decided to adopt the new treatment;

another is to inform on how many have judged that it is preferable to stick to the old

treatment; a third is to reveal both the number of doctors in favor of the new treatment
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and the number of doctors in favor of the old one. Following the theoretical predictions,

one could conclude that, if the health agency is particularly concerned about the adoption

of a particular treatment (e.g., in case it then proves to be ineffective, or because it is

particularly expensive), the agency should not reveal information about the adoption rate

of this treatment.21 Theoretically, that would avoid a cascade of adoptions on the new

treatment, which is relevant in the case the treatment is not good. Our works shows

that one should be cautious in using this logic, since the theoretical results on aggregate

investments and welfare for large groups of agents are actually reversed in the laboratory.

21Note that these extra considerations are unmodelled, hence they were not part of our welfare analysis.

An example of adoption of a new treatment in which imitation seemed to play a big role is that of

tonsillectomy in the sixties and seventies (see Bikhchandani et al., 1992).
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Çelen, B., & Kariv, S. (2005). An Experimental Test of Observational Learning under

Imperfect Information. Economic Theory, 26 (3), 677–699.

Chamley, C., & Gale, D. (1994). Information Revelation and Strategic Delay in a Model

of Investment. Econometrica, 62 (5), 1065–1085.

Cipriani, M., & Guarino, A. (2009). Herd Behavior in Financial Markets: An Experiment

with Financial Market Professionals. Journal of the European Economic Associa-

tion, 7, 206–233.

De Filippis, R., Guarino, A., Jehiel, P., & Kitagawa, T. (2022). Non-Bayesian Updating in

a Social Learning Experiment. Journal of Economic Theory, 199, 105188.

Fischbacher, U. (2007). z-Tree: Zurich Toolbox for Ready-made Economic Experiments.

Gale, D. (1996). What Have We Learned from Social Learning. European Economic Review,

40, 617–628.

30



Goeree, J., Holt, C., & Palfrey, T. (2016). Quantal Response Equilibrium: A Stochastic

Theory of Games. Princeton University Press.

Goeree, J., Palfrey, T., Rogers, B., & McKelvey, R. (2007). Self-correcting Information

Cascades. The Review of Economic Studies, 74 (3), 733–762.

Guarino, A., Harmgart, H., & Huck, S. (2011). Aggregate Information Cascades. Games

and Economic Behavior, 73 (1), 167–185.

Guarino, A., & Jehiel, P. (2013). Social Learning with Coarse Inference. American Eco-

nomic Journal: Microeconomics, 5 (1), 147–174.

Herrera, H., & Hörner, J. (2013). Biased Social Learning. Games and Economic Behavior,

80, 131–146.

Jehiel, P. (2005). Analogy-based Expectation Equilibrium. Journal of Economic Theory,

123 (2), 81–104.

Larson, N. (2015). Inertia in Social Learning from a Summary Statistic. Journal of Eco-

nomic Theory, 159, 596–626.

Monzon, I., & Rapp, M. (2014). Observational Learning with Position Uncertainty. Journal

of Economic Theory, 154, 375–402.

Simmons, B., Dobbin, F., & Garrett, G. (2006). Introduction: The International Diffusion

of Liberalism. International Organization, 60 (4), 781–810.
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6 Online Appendix

Proof of Proposition 1

Let us first consider the optimal decision of an agent who observes (Ti = 0, si = 1). The

agent’s likelihood ratio is

Pr(ω = 1 | Ti = 0, si = 1)

Pr(ω = 0 | Ti = 0, si = 1)
=

Pr(Ti = 0 | ω = 1)

Pr(Ti = 0 | ω = 0)

q

1− q
, (8)

where q is the signal precision (in the text, we set q = 0.7 since this is the precision used

in the experiment – the proposition holds more generally).

Hence, the agent predicts that the project is more likely to be good if

Pr(Ti = 0 | ω = 1)

Pr(Ti = 0 | ω = 0)
>

1− q

q
. (9)

Observe that

Pr(Ti = 0 | ω = 1)=
n∑

i=1

Pr(Ti = 0 | ω = 1, i) Pr(i | ω = 1)

=
n∑

i=1

Pr(Ti = 0 | ω = 1, i)
1

10
. (10)

Moreover,

Pr(Ti = 0 | ω = 1, i = 1) = 1, (11)

and

Pr(Ti = 0 | ω = 1, i = 2)=Pr(T2 = 0 | ω = 1)

=Pr(a1 = 0 | ω = 1, T1 = 0)

=
(
q
(
1− Pr(a1 = 1 | s1 = 1, T1 = 0)

)
+(1− q)

(
1− Pr(a1 = 1 | s1 = 0, T1 = 0)

))
. (12)

Let x0 ≡ Pr(ai = 1 | si = 1, Ti = 0) and y0 ≡ Pr(ai = 1 | si = 0, Ti = 0) denote

the probabilities of investing after observing no investments and a good or bad signal,

respectively. Then, we have that

Pr(Ti = 0 | ω = 1, i = 2) = (q(1− x0) + (1− q)(1− y0)). (13)

Similar computations show that

Pr(Ti = 0 | ω = 1, i) = ((q(1− x0) + (1− q)(1− y0)))
i−1 . (14)
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Therefore,

Pr(Ti = 0 | ω = 1) =
n∑

i=1

(q(1− x0) + (1− q)(1− y0))
i−1, (15)

and, similarly,

Pr(Ti = 0 | ω = 0) =
n∑

i=1

((1− q)(1− x0) + q(1− y0))
i−1. (16)

Therefore, it is optimal for the agent to predict a good project if∑n
i=1(q(1− x0) + (1− q)(1− y0))

i−1∑n
i=1((1− q)(1− x0) + q(1− y0))i−1

>
1− q

q
. (17)

Now note that the left hand side of the inequality is decreasing in x0 and increasing in

y0, hence it reaches its minimum at (x0 = 1, y0 = 0). At the minimum, solving for the

sums and rearranging terms, the inequality becomes

1−(1−q)n

1−(1−q)

1−qn

1−q

>
1− q

q
, (18)

which is satisfied for any q > 0.5. (Note that the minimum coincides with the expression

for the PBE; see also the proof in Guarino et al. (2011, p. 171).

We now consider the optimal decision of an agent who observes (Ti = 0, si = 1). The

agent’s likelihood ratio is

Pr(ω = 1 | Ti = 0, si = 1)

Pr(ω = 0 | Ti = 0, si = 1)
=

Pr(Ti = 0 | ω = 1)

Pr(Ti = 0 | ω = 0)

q

1− q
. (19)

Hence, the agent predicts that the project is more likely to be bad if

Pr(ω = 1 | Ti = 0)

Pr(ω = 0 | Ti = 0)
<

q

1− q
, (20)

that is, if
Pr(Ti = 0 | ω = 1)

Pr(Ti = 0 | ω = 0)
<

q

1− q
. (21)

Similar steps to those above prove that the inequality is respected if and only if∑n
i=1(q(1− x0) + (1− q)(1− y0))

i−1∑n
i=1((1− q)(1− x0) + q(1− y0))i−1

<
q

1− q
. (22)

Now observe that the maximum of the left hand side of the inequality is obtained when

(x0 = 0, y0 = 1). In this case, the inequality becomes

1−qn

1−q

1−(1−q)n

1−(1−q)

<
q

1− q
, (23)
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or
1− qn

1− (1− q)n
< 1, (24)

which is true for any q > 0.5.
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Frequencies of Investment for n = 3 (First 15 Rounds)

For the n = 3 treatment, we ran the experiment with 30 rounds. Table 16 shows the

average investment rates across the first 15 rounds for each contingency.

Table 16: Frequencies of investment for n = 3 (first 15 rounds)

Ti = 0 Ti = 1 Ti = 2

si = 0 0.08 0.10 0.84

si = 1 0.68 0.94 0.93

Empirical frequencies of investment (ai = 1) for the first 15 rounds. The bold font indicates

that, theoretically, a subject is in an up cascade.
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QRE Estimation Method

In this section, we describe the QRE estimation method. We use the empirical frequency

approach. Each subject’s choice probability is a logit response to the empirical expected

payoffs of different actions and is computed according to

Pr(ai = 1|si, Ti = j) =
1

1 + exp(λ(1− 2πsi
i (pj))

, (25)

where pj = Pr(ω = 1|Ti = j) is the belief after observing j investments and before receiving

the signal, and πsi
i (pj) is the expected payoff from choosing ai = 1 given the belief pj and

the signal si.

In the empirical frequency approach, we compute the values of pj from the actual

frequencies of investment. Let us denote these frequencies by ksT , where s refers to the

signal and T to the number of prior investments. Consider the case of n = 3; the frequencies

are as follows:

Ti = 0 Ti = 1 Ti = 2

si = 0 k00 k01 k02

si = 1 k10 k11 k12

From these frequencies, we can compute the value of pj as:

pj =
Pr(Ti = j|ω = 1)Pr(ω = 1)

Pr(Ti = j|ω = 1)Pr(ω = 1) + Pr(Ti = j|ω = 0)Pr(ω = 0)

=
Pr(Ti = j|ω = 1)1

2

Pr(Ti = j|ω = 1)1
2
+ Pr(Ti = j|ω = 0)1

2

. (26)

As an example, let us consider, for n = 3, the case for p0. Let us consider the good state

of the world, that is, ω = 1.

Pr(Ti = 0|ω = 1)=Pr(Ti = 0|ω = 1, i = 1)
1

3
+ Pr(Ti = 0|ω = 1, i = 2)

1

3

+Pr(Ti = 0|ω = 1, i = 3)
1

3

=
1

3

(
1 +

(
q(1− k10) + (1− q)(1− k00)

)
+
(
q2(1− k10) + (1− q)2(1− k00)

+2q(1− q)(1− k00)(1− k10)
))

. (27)
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Similarly, for ω = 0, we find that

Pr(Ti = 0|ω = 0)=Pr(Ti = 0|ω = 0, i = 1)
1

3
+ Pr(Ti = 0|ω = 0, i = 2)

1

3

+Pr(Ti = 0|ω = 0, i = 3)
1

3

=
1

3

(
1 +

(
(1− q)(1− k10) + q(1− k00)

)
+
(
(1− q)2(1− k10) + q2(1− k00)

+2q(1− q)(1− k00)(1− k10)
))

(28)

.

After computing pj, we apply Bayes’s rule to find the expected payoffs from choosing

action aisT = 1, defined as the action of agent i, conditional on signal s and observed

investments T . If si = 1 and Ti = j, then

π1
i ≡ Pr(ω = 1|si = 1, Ti = j) =

qpj
qpj + (1− q)(1− pj)

. (29)

If si = 0 and Ti = j, then

π0
i ≡ Pr(ω = 1|si = 0, Ti = j) =

(1− q)pj
(1− q)pj + q(1− pj)

. (30)

The expected payoff loss if the agent chooses ai = 1 is the expected payoff of choosing

ai = 0 minus the expected payoff of choosing ai = 1:

(1− πsi
i (pj))− πsi

i (pj) = (1− 2πsi
i (pj)). (31)

From the expected payoff functions, we use the logit specification in Expression 25 to

compute the probabilities of ai. The likelihood function for a single round of the experiment

is given by

l(λ) =
n∏

i=1

1∏
s=0

n−1∏
T=0

Pr (aisT |λ) . (32)

To compute the likelihood function for all M rounds, we define amisT as the action of agent

i in round m, conditional on signal s and observed investments T . The likelihood function

is given by

L(λ) =
M∏

m=1

n∏
i=1

1∏
s=0

n−1∏
T=0

Pr (amisT |λ) . (33)

For the enriched model, we use the same steps. However, beliefs after receiving the

private signals are updated as in Expressions 6 and 7.
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INSTRUCTIONS [n=3] 

Welcome to our experiment! 

You are participating in an experiment in which you interact with two other participants. There may be more people in the 

room, but you will be interacting with only two participants, and this group will be the same throughout the entire 

experiment. Your earnings will depend on your decisions and some luck. If you are careful and make good decisions, you 

may earn a considerable amount of money. You will receive the money, in private, immediately after the experiment. All 

participants have the same instructions. 

Please be quiet during the entire experiment. Do not talk to your neighbours and do not try to look at their screens. Simply 

concentrate on the experiment. If you have a question during the experiment, please raise your hand. We will be happy to 

come to you and answer it privately. 

The experiment 

What do I have to do? 

There will be several rounds in this experiment. In each round, you will be asked to predict if a project is good or bad. 

At the beginning of each round, the computer will randomly select whether the project is good or bad. It is equally likely 

that either a good project or a bad project is selected. In other words, the project is good with 50% probability and bad 

with 50% probability.  

Note that the project is the same for all participants. If the project is good, it is good for all three participants in the group. 

Similarly, if it is bad, it is bad for all the three of you. 

If your prediction is correct, that is, the computer selects the good project and you predict that the project is good, or 

the computer selects the bad project and you predict that the project is bad, then you earn £7. If your prediction is 

incorrect, you earn nothing. 

What information do I have in order to make my decision? 

As we said, the computer will select whether the project is good or bad randomly. You will not know the computer’s 

selection, but we will give you some information about it to help you to make your prediction. You will be shown a ball, 

either green or red, drawn from an urn. If the project is good, the ball is drawn from an urn containing 70 GREEN 

and 30 RED balls. In other words, if the project is good, there is 70% probability that a green ball is drawn. If the 

project is bad, the ball is drawn from an urn containing 70 RED and 30 GREEN balls. In other words, if the 

project is bad, there is 70% probability that the ball is red. You (and only you) will be told the colour of this ball.  

Note, while the project is the same for all participants (and thus the urn from which the ball is drawn is the same for 

everybody), the computer will draw a ball afresh for each participant. It will draw a ball for you and then replace it 

into the urn. Then, it will draw a ball for another participant and then replace it. And so on, so that the composition of the 

urn is always the same. Of course, it is well possible that you receive a green ball and another participant a red one, and 

vice versa. 

This is not the only information that you will receive. You will also observe something about the other participants’ 

decisions. 

Information about other participants’ decisions 

You and the other two participants will make your predictions about the project in sequence. Therefore, you may 

be the first in the sequence and make your decision before everybody else; or you may be the second in the sequence, or 

the third in the sequence. Your position in the sequence is assigned to you randomly by the computer. Any position in the 

sequence is equally likely. 

We will not tell you your position in the sequence. However, we will tell you how many people before your turn in the 

sequence have predicted that the project is good. Note that you will only know how many people before your 



turn predicted the project to be good. We will not tell you how many people predicted the project to be bad.  Let 

us briefly look at the different possibilities that can arise: 

(i) You might see that two participants predicted the project to be good, in which case, obviously, you know for sure that 

you must be the last in the sequence, which is the third position. In this case, you know that nobody predicted the project 

to be bad.  

(ii) You might observe that none of the other participants before your turn predicted the project to be good. In that case 

you might be the first in the sequence; or you might be the second in the sequence and the first participant predicted the 

project to be bad (something you cannot observe); or you might be the third in the sequence and both the first and the 

second participants predicted the project to be bad. In general, you may be in any position in the sequence and the reason 

you are observing no prediction of “good project” is because the participants who made their predictions before you 

predicted that the project is bad.  

(iii) You might see some predictions of “good project”. If you see, for instance, two predictions of “good project”, it 

means that the first and second participants in the sequence have both predicted “the project is good” and you are, 

obviously, the third (and last) in the sequence. If you see, for instance, one prediction of “good project”, you might be the 

second in the sequence and the first participant predicted that the “project is good”, or you might also be the third in the 

sequence and either one of your predecessors in the sequence (the first or the second) predicted “the project is good”, 

whereas the other predicted “the project is bad”.  

It is important that this set up is clear to you. Please raise your hand if you have any question at this point.  

Procedures for each round 

There will be 33 rounds in this experiment. The first 3 are practice rounds: they are for you to become familiar 

with the experiment and will not count towards your payment. The last 30 will count towards your final 

payment. 

Note that every round is completely independent of other rounds. In other words, whether the project is good or 

bad in a round is independent of whether it was good or bad in previous rounds. 

First, the computer decisions – At the beginning of each round the computer selects whether the project is good or bad, 

randomly. It then draws a ball for you and one for each other participants in sequence either from the urn with 70 

GREEN balls and 30 RED balls if the project is good, or from the run with 70 RED balls and 30 GREEN balls if the 

project is bad. Moreover, it decides the position of each participant in the sequence: it selects one of you as the first in the 

sequence, one as the second, one as the third. 

Second, your decision – You have to predict whether the project is good or bad. You have two pieces of information: (i) the 

colour of the ball you receive and (ii) how many people you observe having predicted “the project is good” before your 

turn.  

But note: we will not tell you your position in the sequence and the colour of your ball straight away. We will reveal this to 

you later. Instead, at this stage, we will ask you to make your prediction for each possible situation you may find yourself 

in. We will ask you to make the prediction about whether the project is good or bad for each possible combination of 

“number of people predicting that the project is good you observe” and “colour of your ball”.  

You will see a table like this: 

 



 

The table indicates all possible situations in which you can be. For each possible situation, you have to predict whether the 

project is good or bad. Each row number indicates how many people predicting “the project is good” you observe. These 

are the number of predictions “the project is good” made by other participants who preceded you in the sequence. 

Remember that they are not necessarily the number of participants who preceded you, because you can only observe 

predictions of the type “the project is good”, you cannot observe predictions of the type “the project is bad”. The last two 

columns indicate the colour of the ball you receive. 

Therefore, the way to read the table is the following: 

Look at row numbered 0: 

 

 

In the row numbered 0, we are asking you: suppose you observe NO ONE PREDICTING “THE PROJECT IS 

GOOD”; and suppose you receive a green ball from the urn; do you think the project is good or bad? And if, instead, you 

receive a red ball from the urn, do you think the project is good or bad? We will ask you to record your answers in the cells 

marked by symbol “???” in row 0, by clicking on it: clicking once changes the answer to “PREDICT GOOD PROJECT”; 

clicking twice changes the answer to “PREDICT BAD PROJECT”. You can click and change the answer as many times 

as you like. 

 

 

 

 



Look now at row numbered 1:  

 

In the row numbered 1, you observe that somebody else predicted the project to be good. In this situation, we are asking 

you: suppose you observe ONE PERSON PREDICTING “THE PROJECT IS GOOD” and you receive a green ball 

from the urn; do you think the project is good or bad? And if instead you receive a red ball from the urn, do you think the 

project is good or bad? We will ask you to record your answers in the cells marked with symbol “???” in row 1. 

The last row reads in a similar way. In row numbered 2 you observe TWO PEOPLE PREDICTING “THE PROJECT IS 

GOOD”.  

 

 

In row 2 we are asking you: suppose you observe TWO PEOPLE PREDICTING “THE PROJECT IS GOOD” and you 

receive the green ball; do you think the project is good or bad? And if, instead, you receive the red ball, do you think the 

project is good or bad?”. 

We will ask you to record your answers for each possible situation. So, you have to make 6 decisions in total.  

Your Per-round earnings  

After all participants have made their predictions, the computer will reveal your position in the sequence, 

whether the project was good or bad, and the colour of your ball.  

Out of the 6 situations you were presented, only one situation will be relevant for your earnings and this depends on three 

things:  

 
1. the colour of the ball you actually received;  
2. the position in the sequence the computer assigned to you;  
3. the decisions of the other participants who preceded you in the sequence. 

 
Your earnings will depend on whether your prediction was correct in that selected situation. 

Let us see some examples. Suppose, for instance, that your decisions in rows 0 to 2 are as follows:  

 

 

 

 

 



 

0 You observe no one predicting “the 
project is good”  

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

1 You observe 1 person predicting “the 
project is good” 

PREDICT GOOD 
PROJECT 

PREDICT BAD 
PROJECT 

2 You observe 2 persons predicting “the 
project is good” 

PREDICT BAD 
PROJECT 

. 

 

For the purpose of the examples we show you only 5 imaginary decisions out of the 6 decisions you will have to make. 

These decisions are just for the examples; do not attach any value to them. 

 
Example 1.  

Suppose the computer selects you as the first in the sequence and you receive the green ball from either urn. Clearly, 

being in the first position in the sequence, you observe no one predicting before your turn. Therefore, the relevant 

situation for your earnings is the one in row 0 (because you observe no one predicting “the project is good”) and in the 

column “you receive a green ball”, which is highlighted in yellow below:  

 

 

 

0 You observe no one predicting “the 
project is good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

 

Since in this situation your prediction was “THE PROJECT IS BAD”, your earnings will be  

£0 if the project is good  
£7 if the project is bad  
 
Example 2.  

Suppose the computer selects you as the second in the sequence and you receive a green ball. The relevant situation 

for you depends on what the participant who was selected as first in the sequence decided to do. Suppose he 

received a red ball and predicted that the “project is bad” when he receives a red ball and observes no one predicting the 

project to be good (as he does since he is the first in the sequence). In this case, being the second in the sequence, you 

observe no one predicting the “project is good”. Therefore, your relevant situation for your earnings is again the one in 

row 0 (because you observe no one predicting “the project is good”) and in the column “you receive a green ball”, which 

is highlighted in yellow below:  

 

 

 



 

0 You observe no one predicting “the 
project is good”  

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

 

Since in this situation you predicted that the “PROJECT IS BAD”, your earnings will be  

£0 if the project is good  
£7 if the project is bad 
 

Consider now the same example but a different scenario: suppose you are second in the sequence and the participant 

selected as the first in the sequence and who received a red ball predicted that “the project is good”. In this case, being the 

second in the sequence, you observe one person predicting “the project is good”. Therefore, the relevant situation for your 

earnings is the one in row 1 (because you observe one person predicting “the project is good”) and in the column “you 

receive a green ball” (because you received a green ball), which is highlighted in yellow below: 

 

0 You observe no one predicting “the 
project is good”  

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

1 You observe 1 person predicting “the 
project is good” 

PREDICT GOOD 
PROJECT  

PREDICT BAD 
PROJECT 

 

Since in this situation you predicted that the “PROJECT IS GOOD”, your earnings will be  

£7 if the project is good 
£0 if the project is bad  
 

Example 3. 

Suppose the computer selects you as the third in the sequence and you receive a green ball. The relevant situation 

for you depends on what the participants who were selected as first and second in the sequence decided to do. 

Suppose that the one selected as first received a red ball and predicted that “the project is bad”. Furthermore, suppose that 

the one selected as second received a green ball and predicted that “the project is bad” when he observes a green ball and 

no one predicting the project to be good (as he does because the first participant predicted that “the project is bad”). In 

this case, being the third in the sequence, you observe no one predicting that “the project is good”. Therefore, your 

relevant situation for your earnings is again the one in row 0 and in the column “you receive a green ball”, which is 

highlighted in yellow below: 

 

 

0 You observe no one predicting “the 
project is good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

 

 



Since in this situation you predicted that the “PROJECT IS BAD”, your earnings will be  

£0 if the project is good,  
£7 if the project is bad. 
 

Consider now the same example but a different scenario: suppose that the participant selected as second in the sequence 

and who received a green ball predicted the project to be good. In this case, being the third in the sequence, you observe 

one person predicting that “the project is good”. Therefore, the relevant situation for your earnings is the one in row 1 and 

in the column “you receive a green ball”, which is highlighted in yellow below:  

 

 

 

0 You observe no one predicting “the 
project is good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

1 You observe one person predicting “the 
project is good” 

PREDICT GOOD 
PROJECT 

PREDICT BAD 
PROJECT 

 

Since in this situation you predicted that the “PROJECT IS GOOD”, your earnings will be  

£7 if the project is good, 
£0 if the project is bad. 
 
Consider now a different scenario. Suppose that the participant selected as first in the sequence and who received a red 

ball predicted that “the project is good”. Furthermore, suppose that the one selected as second in the sequence and who 

received a green ball predicted that “the project is good” when he observes a green ball and one person predicting that 

“the project is good” (as he does because the first participant made that prediction too). In this case, being the third in the 

sequence, you observe two people predicting that “the project is good”. Therefore, the relevant situation for your earnings 

is the one in row 2 and in the column “you receive a green ball”, which is highlighted in yellow below:  

 

0 You observe no one predicting “the 
project is good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

1 You observe one person predicting 
“the project is good” 

PREDICT GOOD 
PROJECT  

PREDICT BAD 
PROJECT 

2 You observe two people predicting 
“the project is good” 

PREDICT BAD 
PROJECT 

. 

 

Since in this situation you predicted that the “PROJECT IS BAD”, your earnings will be  

£0 if the project is good,  
£7 if the project is bad.  
 
Since the computer chooses the sequence randomly, you may end up in any position. Hence, think carefully 

about what is in your interest to do in each situation. 

You earnings will be summarised on a screen. For example, take the last scenario in example 3: you will see your earnings 

on a screen similar to the one below:  



 

You earnings for round # 1 

The project was good. 

You received a green ball. 

You were the third in the sequence. 

 Based on your predictions and the other participants’ predictions, the sequence of predictions in this round is:  

 

 

 

 

The project was good and your prediction was that the project is BAD, so your earnings are £0 

How much would my payoff be if I were in a different position in the sequence?  

Your accrued earnings for each round are based on one selected sequence. For instance, in the example above you were 

selected as the third in the sequence. What would your payoff be had you been in a different position in the sequence? For 

example, how much would you have gotten if you had been first in the sequence? And, what if you had been selected as 

the second in the sequence?  

At the end of each round, the computer will tell you the payoff you would have gained on average for each possible 

position in the sequence in which you could be, based on your predictions and on the predictions of the other 

participants in this round. These will be average earnings because there is more than one potential sequence. For instance, if 

you are second in the sequence, each of the remaining 2 participants can be selected as the first. So there are two different 

potential sequences. Your average earnings are calculated based on your predictions and on the predictions of others in all 

possible sequences. 

These average payoffs will not accrue to your final earnings. But they will give you an idea about the quality of 

your predictions.  

Your average payoffs for each position in the sequence will be shown on the last screen of each round. You will see your 

average payoff for each position in the sequence on a screen similar to the one below:  

 

 

 

 

 

 

 

 

Your and 
other 
participants’ 
position in 
the 
sequence  

1st in 
sequence  

2nd in 
sequence 

3rd  in 
sequence: 

YOU 

Participant’s 
prediction  

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

“BAD 
PROJECT” 



 

What would your payoffs be on average if you had been selected in any other position in the sequence? 

Each column below tells you the average payoff for each possible position in the sequence. Note that these average 

payoffs are calculated based on the predictions of all participants in this round. 

 

 

 

Final payment 

For showing up in time for the experiment you earn £5. In addition, you will earn an amount that depends on your 

answers during the experiment. We will pay you according to your accrued earnings in 3 randomly selected rounds.  

Remember, this experiment has 30 rounds and you accrue some earnings in each round. After the last round, three rounds 

among the 30 rounds will be selected randomly (one among the rounds 1-10, one among rounds 11-20 and one among 

rounds 21-30). We will sum up your earnings in these 3 rounds and add £5 for showing up. Since each round has an 

equal chance to be selected for payment, think carefully about what is in your interest to do in each round.  

Do you have any question? If so, please raise your hand. The experiment will start shortly.  



INSTRUCTIONS [n=10] 

Welcome to our experiment! 

You are participating in an experiment in which you interact with nine other participants. Your earnings 

will depend on your decisions and some luck. If you care careful and make good decisions, you may earn 

a considerable amount of money. You will receive the money, in private, immediately after the 

experiment. All participants have the same instructions. 

Please be quiet during the entire experiment. Do not talk to your neighbours and do not try to look at 

their screens. Simply concentrate on the experiment. If you have a question during the experiment, please 

raise your hand. We will be happy to come to you and answer it privately. 

The experiment 

What do I have to do? 

There will be several rounds in this experiment. In each round, you will be asked to predict if a project 

is good or bad. At the beginning of each round, the computer will randomly select whether the project is 

good or bad. It is equally likely that either a good project or a bad project is selected. In other words, the 

project is good with 50% probability and bad with 50% probability.  

Note that the project is the same for all participants. If the project is good, it is good for all ten 

participants. Similarly, if it is bad, it is bad for all the ten of you. 

If your prediction is correct, that is, the computer selects the good project and you predict that the 

project is good, or the computer selects the bad project and you predict that the project is bad, then you 

earn £7. If your prediction is incorrect, you earn nothing. 

What information do I have in order to make my decision? 

As we said, the computer will select whether the project is good or bad randomly. You will not 

know the computer’s selection, but we will give you some information about it to help you to make your 

prediction. You will be shown a ball, either green or red, drawn from an urn. If the project is good, the 

ball is drawn from an urn containing 70 GREEN and 30 RED balls. In other words, if the project 

is good, there is 70% probability that a green ball is drawn. If the project is bad, the ball is drawn 

from an urn containing 70 RED and 30 GREEN balls. In other words, if the project is bad, there is 

70% probability that the ball is red. You (and only you) will be told the colour of this ball.  

Note, while the project is the same for all participants and thus, the urn from which the ball is drawn is 

also the same for everybody, the computer will draw a ball afresh for each participant. It will draw a 

ball for you and then replace it into the urn. Then, it will draw a ball for another participant and then 

replace it. And so on, so that the composition of the urn is always the same. Of course, it is well possible 

that you receive a green ball and another participant a red one, and vice versa. 

This is not the only information that you will receive. You will also observe something about the other 

participants’ decisions. 

Information about other participants’ decisions 

You and the other nine participants will make your predictions about the project in sequence. 

Therefore, you may be the first in the sequence and make your decision before everybody else; or you 

may be the second in the sequence or the third and so on. The last position in the sequence is, obviously, 



the tenth. Your position in the sequence is assigned to you randomly by the computer. Any position in 

the sequence is equally likely. 

We will not tell you your position in the sequence. However, we will tell you how many people before 

your turn in the sequence have predicted that the project is good. Note, you will only know how 

many people before your turn predicted the project to be good. We will not tell you how many 

people predicted the project to be bad.  Let us briefly look at the different possibilities that can arise: 

(i) You might see that nine participants predicted the project to be good, in which case, obviously, you 

know for sure that you must be the last in the sequence. In this case, you know that nobody predicted the 

project to be bad.  

(ii) You might observe that none of the other participants before your turn predicted the project to be 

good. In that case you might be the first in the sequence; or you might be the second in the sequence and 

the first participant predicted the project to be bad (something you cannot observe); or you might be the 

third in the sequence and both the first and the second participants predicted the project to be bad; or 

you might be fourth in the sequence, and the three preceding participants all predicted the project to be 

bad. In general, you may be in any position in the sequence and the reason you are observing no 

prediction of “good project” is because the participants who made their predictions before you predicted 

that the project is bad.  

(iii) You might see some predictions of “good project”. If you see, for instance, two people predicting 

“the project is good”, it may be that you are the third in the sequence and the first two in the sequence 

have both predicted “the project is good”. But you might also be the fourth in the sequence and only two 

of the three participants who preceded you have predicted “the project is good”. You might even be the 

last one in the sequence and only two of your predecessors have predicted “the project is good”, whereas 

all the others have predicted “the project is bad”.  

It is important that this set up is clear to you. Please raise your hand if you have any question at this point.  

Procedures for each round 

There will be 18 rounds in this experiment. The first 3 are practice rounds: they are for you to 

become familiar with the experiment and will not count for your payment. The last 15 will count 

for your final payment. 

Note that every round is completely independent of other rounds. Specifically, whether the 

project is good or bad in a round is independent of whether it was good or bad in previous 

rounds. 

First, the computer decisions – At the beginning of each round the computer selects whether the project is 

good or bad, randomly. It then draws a ball for you and one for each other participants in sequence 

(every time with replacement in the urn) either from the urn with 70 GREEN balls and 30 RED balls if 

the project is good, or from the run with 70 RED balls and 30 GREEN balls if the project is bad. 

Moreover, it decides the position of each participant in the sequence: it selects one of you as the first in 

the sequence, one as the second, one as the third, and so on. 

Second, your decision – You have to predict whether the project is good or bad. You have two pieces of 

information: (i) the colour of the ball you receive and (ii) how many people you observe having predicted 

“the project is good” before your turn.  



But note: we will not tell you your position in the sequence and the colour of your ball straight away. We 

will reveal this to you later. Instead, at this stage, we will ask you to make your prediction for each 

possible situation you may find yourself in. We will ask you to make the prediction about whether the 

project is good or bad for each possible combination of “number of people predicting that the project is 

good you observe” and “colour of your ball”.  

You will see a table like this: 

Row 
number 

Number of people predicting “the project is 
good” you observe: 

You receive 
a Green ball 

You 
receive a 
Red ball 

0 You observe no one predicting “the project is 
good”  

? ? 

1 You observe 1 person predicting “the project is 
good” 

? ? 

2 You observe 2 people predicting “the project is 
good” 

? ? 

3 You observe 3 people predicting “the project is 
good” 

? ? 

4 You observe 4 people predicting “the project is 
good” 

? ? 

5 You observe 5 people predicting “the project is 
good” 

? ? 

6 You observe 6 people predicting “the project is 
good” 

? ? 

7 You observe 7 people predicting “the project is 
good” 

? ? 

8 You observe 8 people predicting “the project is 
good” 

? ? 

9 You observe 9 people predicting “the project is 
good” 

? ? 

 

The table indicates all possible situations in which you can be. For each possible situation, you have to 

predict whether the project is good or bad. Each row number indicates how many people predicting “the 

project is good” you observe. These are the number of predictions “the project is good” made by other 

participants who preceded you in the sequence. Recall that they are not necessarily the number of 

participants who preceded you, because you can only observe predictions of the type “the project is 

good”, you cannot observe predictions of the type “the project is bad”. The last two columns indicate the 

colour of the ball you receive. 

Therefore, the way to read the table is the following: 

Look at row numbered 0: 

  Green ball Red ball 

0 You observe no one predicting “the project is 
good”  

? ? 

 

In the row numbered 0, we are asking you: suppose you observe NO ONE PREDICTING “THE 

PROJECT IS GOOD”; and suppose you receive a green ball from the urn; do you think the project is 

good or bad? And if, instead, you receive a red ball from the urn, do you think the project is good or bad? 

We will ask you to record your answers in the cells marked by symbol “?” in row 0. 



Look now at row numbered 1:  

  Green ball Red ball 

1 You observe 1 person predicting “the project is 
good” 

? ? 

 

In the row numbered 1, you observe that somebody else predicted the project to be good. In this 

situation, we are asking you: suppose you observe ONE PERSON PREDICTING “THE PROJECT IS 

GOOD” and you receive a green ball from the urn; do you think the project is good or bad? ? And if 

instead you receive a red ball from the urn, do you think the project is good or bad? We will ask you to 

record your answers in the cells marked with symbol “?” in row 1. 

All other rows read in a similar way, but as you go down the table, the number of people you observe 

predicting “the project is good” increases in each row. In row numbered 2 you observe TWO PEOPLE 

PREDICTING “THE PROJECT IS GOOD”. In row numbered 3 you observe THREE PEOPLE 

PREDICTING “THE PROJECT IS GOOD”, and so on. For instance, look at row 6: 

  Green ball Red ball 

6 You observe 6 people predicting the “project is 
good” 

? ? 

 

In row 6 we are asking you: suppose you observe SIX PEOPLE PREDICTING “THE PROJECT IS 

GOOD” and you receive the green ball; do you think the project is good or bad? And if, instead, you 

receive the red ball, do you think the project is good or bad?  

We will ask you to record your answers for each possible situation. So, you have to make 20 decisions in 

total.  

Your Per-round earnings  

After all participants have made their predictions, the computer will reveal your position in the sequence, 

whether the project was good or bad, and the colour of your ball.  

Out of the 20 situations you were presented, only one situation will be relevant for your earnings and this 

depends on three things:  

 
1. the colour of the ball you received;  
2. the position in the sequence the computer assigned to you;  
3. the decisions of the other participants who preceded you in the sequence. 

 
Your earnings will depend on whether your prediction was correct in that selected situation. 

Let us see some examples. Suppose, for instance, that your decisions in rows 0 to 3 are as follows:  

 

  Green ball Red ball 

0 You observe no one predicting “the project is good”  PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

1 You observe 1 person predicting “the project is 
good” 

PREDICT GOOD 
PROJECT 

PREDICT BAD 
PROJECT 



2 You observe 2 people predicting “the project is 
good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

3 You observe 3 people predicting “the project is 
good” 

PREDICT GOOD 
PROJECT 

PREDICT BAD 
PROJECT 

4 You observe 4 people predicting “the project is 
good” 

. . 

5 You observe 5 people predicting “the project is 
good” 

. . 

6 You observe 6 people predicting “the project is 
good” 

. . 

7 You observe 7 people predicting “the project is 
good” 

. . 

8 You observe 8 people predicting “the project is 
good” 

. . 

9 You observe 9 people predicting “the project is 
good” 

. . 

 

For the purpose of the examples we show you only 8 imaginary decisions out of the 20 decisions you will 

have to make. These decisions are just for the examples; do not attach any value to them. 

 
Example 1.  

Suppose the computer selects you as the first in the sequence and you receive the green ball from 

either urn. Clearly, being in the first position in the sequence, you observe no one predicting before your 

turn. Therefore, the relevant situation for your earnings is the one in row 0 (because you observe no one 

predicting “the project is good”) and in the column “you receive a green ball”, which is highlighted in 

yellow below:  

 

  You receive 
a Green ball 

You receive 
a Red ball 

0 You observe no one predicting “the project is 
good” 

PREDICT 
BAD 

PROJECT 

PREDICT 
GOOD 

PROJECT 

 

Since in this situation your prediction was “THE PROJECT IS BAD”, your earnings will be  

£0 if the project is good  
£7 if the project is bad  
 
Example 2.  

Suppose the computer selects you as the second in the sequence and you receive a green ball. The 

relevant situation for you depends on what the participant who was selected as first in the 

sequence decided to do. Suppose he received a red ball and predicted that the “project is bad” when he 

receives a red ball and observes no one predicting (as he does since he is the first in the sequence). In this 

case, being the second in the sequence, you observe no one predicting the “project is good”. Therefore, 

your relevant situation for your earnings is again the one in row 0 (because you observe no one predicting 

“the project is good”) and in the column “you receive a green ball”, which is highlighted in yellow below:  



 

 

  You receive a Green ball You receive 
a Red ball 

0 You observe no one predicting “the project 
is good”  

PREDICT BAD 
PROJECT 

PREDICT 
GOOD 

PROJECT 

 

Since in this situation you predicted that the “PROJECT IS BAD”, your earnings will be  

£0 if the project is good  
£7 if the project is bad 
 

Consider now the same example but a different scenario: suppose that the participant selected as the first 

in the sequence and who received a red ball predicted that “the project is good”. In this case, being the 

second in the sequence, you observe one person predicting “the project is good”. Therefore, the relevant 

situation for your earnings is the one in row 1 (because you observe one person predicting “the project is 

good”) and in the column “you receive a green ball”, which is highlighted in yellow below: 

  You receive 
a Green ball 

You receive 
a Red ball 

0 You observe no one predicting “the project is 
good”  

PREDICT 
BAD 

PROJECT 

PREDICT 
GOOD 

PROJECT 

1 You observe 1 person predicting “the project is 
good” 

PREDICT 
GOOD 

PROJECT  

PREDICT 
BAD 

PROJECT 

 

Since in this situation you predicted that the “PROJECT IS GOOD”, your earnings will be  

£7 if the project is good 
£0 if the project is bad  
 

Example 3. 

Suppose the computer selects you as the third in the sequence and you receive a green ball. The 

relevant situation for you depends on what the participants who were selected as first and second 

in the sequence decided to do. Suppose that the one selected as first received a red ball and predicted 

that the project is bad when he observes no one predicting that the project is good and a red ball. 

Furthermore, suppose that the one selected as second received a green ball and predicted that the project 

is bad when he observes a green ball and no one predicting that the project is good (as he does because 

the first predicted that the project is bad). In this case, being the third in the sequence, you observe no 

one predicting that the project is good. Therefore, your relevant situation for your earnings is again the 

one in row 0 and in the column “you receive a green ball”, which is highlighted in yellow below: 

 

 



  You receive 
a Green ball 

You receive 
a Red ball 

0 You observe no one predicting “the project is 
good” 

PREDICT 
BAD 

PROJECT 

PREDICT 
GOOD 

PROJECT 

 

Since in this situation you predicted that the “PROJECT IS BAD”, your earnings will be  

£0 if the project is good,  
£7 if the project is bad. 
 

Consider now the same example but a different scenario: suppose that the participant selected as second 

and who received a green ball decided that he would predict that the project is good. In that case, being 

the third in the sequence, you observe one person predicting that the project is good. Therefore, the 

relevant situation for your earnings is the one in row 1 and in the column “you receive a green ball”, 

which is highlighted in yellow below:  

  You receive 
a Green ball 

You receive 
a Red ball 

0 You observe no one predicting “the project is 
good” 

NO INVEST 

1 You observe one person predicting “the project is 
good” 

PREDICT 
GOOD 

PROJECT 

PREDICT 
BAD 

PROJECT 

 

Since in this situation you predicted that the “PROJECT IS GOOD”, your earnings will be  

£7 if the project is good, 
£0 if the project is bad. 
 
Consider now a different scenario. Suppose that the participant selected as first in the sequence and who 

received a red ball decided that he would predict that the project is good. Furthermore, suppose that the 

one selected as second and who received a green ball decided that he would predict that the project is 

good when he observes a green ball and one person predicting that the project is good (as he does 

because the first participant made this prediction). In this case, being the third in the sequence, you 

observe two people predicting that the project is good. Therefore, the relevant situation for your earnings 

is the one in row 2 and in the column “you receive a green ball”, which is highlighted in yellow below:  

  Green ball Red ball 

0 You observe no one predicting “the project is 
good” 

PREDICT 
BAD 

PROJECT 

PREDICT 
GOOD 

PROJECT 

1 You observe one person predicting “the project is 
good” 

PREDICT 
GOOD 

PROJECT  

PREDICT 
BAD 

PROJECT 

2 You observe two people predicting “the project is 
good” 

PREDICT 
BAD 

PROJECT 

PREDICT 
GOOD 

PROJECT 

 

Since in this situation you predicted that the “PROJECT IS BAD”, your earnings will be  



£0 if the project is good,  
£7 if the project is bad.  
 
The same logic applies to any other position in the sequence in which you may be selected. Since the 

computer chooses the sequence randomly, you may end up in any position. Hence, think 

carefully about what is in your interest to do in each situation. 

You earnings will be summarised on a screen. For example, take the last scenario in example 3: you will 

see your earnings on a screen similar to the one below:  

***** 

You earnings for round # 1 

The project was good. 

You received a green ball. 

You were the third in the sequence. 

 Based on your predictions and the other participants’ predictions, the sequence of predictions in this 

round is:  

 

 

Hence, among the 20 possible situations, the relevant one for your earnings is the one recorded in row 2, 

i.e. you observe TWO PEOPLE PREDICTING “THE PROJECT IS GOOD”. 

  Green ball Red ball 

0 You observe no one predicting “the project is 
good” 

PREDICT 
BAD 

PROJECT 

PREDICT 
GOOD 

PROJECT 

1 You observe one person predicting “the project is 
good” 

PREDICT 
GOOD 

PROJECT  

PREDICT 
BAD 

PROJECT 

2 You observe two people predicting “the project is 
good” 

PREDICT 
BAD 

PROJECT 

PREDICT 
GOOD 

PROJECT 

 

Since you predicted that the project is bad and the project was GOOD, your earnings for this round are 

£0.  

 

***** 

Your and 
other 
participants’ 
position in 
the 
sequence  

1st in 
sequence  

2nd in 
sequence 

3rd  in 
sequence: 

YOU 

4th  in 
sequence 

5th  in 
sequence 

6th  in 
sequence 

7th  in 
sequence 

8th  in 
sequence 

9th  in 
sequence 

10th  in 
sequence 

Participant’s 
prediction  

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

“BAD 
PROJECT” 

“BAD 
PROJECT” 

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 



 

How much would my payoff be if I were in a different position in the sequence?  

Your accrued earnings for each round are based on one selected sequence. For instance, in the example 

above you were selected as the third in the sequence. What would your payoff be had you been in a 

different position in the sequence? For example, how much would you have gotten if you had been first 

in the sequence? And, what if you had been selected as the second in the sequence?  

At the end of each round, the computer will tell you the payoff you would have gained on average for 

each possible position in the sequence in which you could be, based on your predictions and on the 

predictions of the other participants in this round. These will be average earnings because there are many 

potential sequences. For instance, if you are second in the sequence, each of the remaining 9 participants 

can be selected as the first. Your average earnings are calculated based on your predictions and on the 

predictions of others in all possible sequences. 

These average payoffs will not accrue to your final earnings. But they will give you an idea about the 

quality of your predictions.  

Your average payoffs for each position in the sequence will be shown on the last screen of each round. 

Take again the last scenario in example 3: you will see your average payoff for each position in the 

sequence on a screen similar to the one below:  

 

***** 

In this round #1, based on the selected sequence and based on your predictions and those of other 
participants, 

you accrued £0 in earnings.  
 

What would your payoffs be on average if you had been selected in any other position in the 

sequence? 

 

Each column below tells you the average payoff for each possible position in the sequence. Note that 

these average payoffs are calculated based on the predictions of all participants in this round. 

 

***** 

Based on your predictions and the predictions of other participants in this round, if you had been selected in the  

 
1st 

position 

in the 
sequence, 

your average 
payoff 

would have 
been 

£x 

 

2nd 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£x 

 

3rd 
position  

in the 
sequence, 

your average 
payoff would 

have been 

£x 

 

4th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£x 

 

5th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£x 

 

6th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£x 

 

7th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£x 

 

8th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£x 

 

9th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£x 

 

10th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£x 

 



 

Final payment 

For showing up in time for the experiment you earn £5. In addition, you will earn an amount which 

depends on your answers during the experiment. We will pay you according to your accrued earnings in 3 

randomly selected rounds.  

Remember, this experiment has 15 rounds and you accrue some earnings in each round. After the last 

round, three rounds among the 15 rounds will be selected randomly (one among the rounds 1-5, one 

among rounds 6-10 and one among rounds 11-15). We will sum up your earnings in these 3 rounds 

and add £5 for showing up. Since each round has an equal chance to be selected for payment, think 

carefully about what is in your interest to do in each round.  

Do you have any question? If so, please raise your hand. The experiment will start shortly.  

 

*** 

Your final payment 

You have finished the experiment. Three rounds have been randomly selected and you will paid 

according to you predictions in these rounds. The three selected rounds are:  

 

 

 

 

 

 

 

 

 

 

 

 

Your final payment including £5 for showing up is £19.  

Round 

3 

Your earnings in 

round  #3  was 

 

Your earnings in 

round  #7  was 

 

Your earnings in 

round  #13  was 

 

£ 7 

 

£ 0 

 

£ 7 

 

Round 

7 

 

Round 

13 

 



INSTRUCTIONS [n=19] 

Welcome to our experiment! 

You are participating in an experiment in which you interact with eighteen other participants. Your 

earnings will depend on your decisions and some luck. If you are careful and make good decisions, you 

may earn a considerable amount of money. You will receive the money, in private, immediately after the 

experiment. All participants have the same instructions. 

Please be quiet during the entire experiment. Do not talk to your neighbours and do not try to look at 

their screens. Simply concentrate on the experiment. If you have a question during the experiment, please 

raise your hand. We will be happy to come to you and answer it privately. 

The experiment 

What do I have to do? 

There will be several rounds in this experiment. In each round, you will be asked to predict if a project 

is good or bad. At the beginning of each round, the computer will randomly select whether the project is 

good or bad. It is equally likely that either a good project or a bad project is selected. In other words, the 

project is good with 50% probability and bad with 50% probability.  

Note that the project is the same for all participants. If the project is good, it is good for all nineteen 

participants. Similarly, if it is bad, it is bad for all the nineteen of you. 

If your prediction is correct, that is, the computer selects the good project and you predict that the 

project is good, or the computer selects the bad project and you predict that the project is bad, then you 

earn £7. If your prediction is incorrect, you earn nothing. 

What information do I have in order to make my decision? 

As we said, the computer will select whether the project is good or bad randomly. You will not 

know the computer’s selection, but we will give you some information about it to help you to make your 

prediction. You will be shown a ball, either green or red, drawn from an urn. If the project is good, the 

ball is drawn from an urn containing 70 GREEN and 30 RED balls. In other words, if the project 

is good, there is 70% probability that a green ball is drawn. If the project is bad, the ball is drawn 

from an urn containing 70 RED and 30 GREEN balls. In other words, if the project is bad, there is 

70% probability that the ball is red. You (and only you) will be told the colour of this ball.  

Note, while the project is the same for all participants and thus, the urn from which the ball is drawn is 

also the same for everybody, the computer will draw a ball afresh for each participant. It will draw a 

ball for you and then replace it into the urn. Then, it will draw a ball for another participant and then 

replace it. And so on, so that the composition of the urn is always the same. Of course, it is possible that 

you receive a green ball and another participant a red one, and vice versa. 

This is not the only information that you will receive. You will also observe something about the other 

participants’ decisions. 

Information about other participants’ decisions 

You and the other eighteen participants will make your predictions about the project in 

sequence. Therefore, you may be the first in the sequence and make your decision before everybody else; 

or you may be the second in the sequence or the third and so on. The last position in the sequence is the 



19th. Your position in the sequence is assigned to you randomly by the computer. Any position in the 

sequence is equally likely. 

We will not tell you your position in the sequence. However, we will tell you how many people before 

your turn in the sequence have predicted that the project is good. Note, you will only know how 

many people before your turn predicted the project to be good. We will not tell you how many 

people predicted the project to be bad.  Let us briefly look at the different possibilities that can arise: 

(i) You might see that 18 participants predicted the project to be good, in which case, obviously, you 

know for sure that you must be the last in the sequence. In this case, you know that nobody predicted the 

project to be bad.  

(ii) You might observe that none of the other participants before your turn predicted the project to be 

good. In that case you might be the first in the sequence; or you might be the second in the sequence and 

the first participant predicted the project to be bad (something you cannot observe); or you might be the 

third in the sequence and both the first and the second participants predicted the project to be bad; or 

you might be fourth in the sequence, and the three preceding participants all predicted the project to be 

bad. In general, you may be in any position in the sequence and the reason you are observing no 

prediction of “good project” is because the participants who made their predictions before you predicted 

that the project is bad.  

(iii) You might see some predictions of “good project”. If you see, for instance, two people predicting 

“the project is good”, it may be that you are the third in the sequence and the first two in the sequence 

have both predicted “the project is good”. But you might also be the fourth in the sequence and only two 

of the three participants who preceded you have predicted “the project is good”. You might even be the 

last one in the sequence and only two of your predecessors have predicted “the project is good”, whereas 

all the others have predicted “the project is bad”.  

It is important that this set up is clear to you. Please raise your hand if you have any question at this point.  

Procedures for each round 

There will be 18 rounds in this experiment. The first 3 are practice rounds: they are for you to 

become familiar with the experiment and will not count for your payment. The last 15 will count 

for your final payment. 

Note that every round is completely independent of other rounds. Specifically, whether the 

project is good or bad in a round is independent of whether it was good or bad in previous 

rounds. 

First, the computer decisions – At the beginning of each round the computer selects whether the project is 

good or bad, randomly. It then draws a ball for you and one for each other participants in sequence 

(every time with replacement in the urn) either from the urn with 70 GREEN balls and 30 RED balls if 

the project is good, or from the urn with 70 RED balls and 30 GREEN balls if the project is bad. 

Moreover, it decides the position of each participant in the sequence: it selects one of you as the first in 

the sequence, one as the second, one as the third, and so on. 

Second, your decision – You have to predict whether the project is good or bad. You have two pieces of 

information: (i) the colour of the ball you receive and (ii) how many people you observe having predicted 

“the project is good” before your turn.  



But note: we will not tell you your position in the sequence and the colour of your ball straight away. We 

will reveal this to you later. Instead, at this stage, we will ask you to make your prediction for each 

possible situation you may find yourself in. We will ask you to make the prediction about whether the 

project is good or bad for each possible combination of “number of people predicting that the project is 

good you observe” and “colour of your ball”.  

You will see a table like this with rows from 0 to 18: 

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

0 You observe no one predicting “the project is 
good”  

? ? 

1 You observe 1 person predicting “the project is 
good” 

? ? 

2 You observe 2 people predicting “the project is 
good” 

? ? 

3 You observe 3 people predicting “the project is 
good” 

? ? 

4 You observe 4 people predicting “the project is 
good” 

? ? 

5 You observe 5 people predicting “the project is 
good” 

? ? 

6 You observe 6 people predicting “the project is 
good” 

? ? 

7 You observe 7 people predicting “the project is 
good” 

? ? 

8 You observe 8 people predicting “the project is 
good” 

? ? 

9 You observe 9 people predicting “the project is 
good” 

? ? 

… 
 

… ? ? 

18 You observe 18 people predicting “the project is 
good” 

? ? 

 

The table indicates all possible situations in which you can be. For each possible situation, you have to 

predict whether the project is good or bad. Each row number indicates how many people predicting “the 

project is good” you observe. These are the number of predictions that “the project is good” made by 

other participants who preceded you in the sequence. Recall that they are not necessarily the number of 

participants who preceded you, because you can only observe predictions of the type “the project is 

good”, you cannot observe predictions of the type “the project is bad”. The last two columns indicate the 

colour of the ball you receive. 

Therefore, the way to read the table is the following: 

Look at row numbered 0: 

Row  Number of people predicting “the project 
is good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

0 You observe no one predicting “the project is 
good”  

? ? 

 



In the row numbered 0, we are asking you: suppose you observe NO ONE PREDICTING “THE 

PROJECT IS GOOD”; and suppose you receive a green ball from the urn; do you think the project is 

good or bad? And if, instead, you receive a red ball from the urn, do you think the project is good or bad? 

We will ask you to record your answers in the cells marked by symbol “?” in row 0, by clicking on it: 

clicking once changes the answer to “PREDICT GOOD PROJECT”; clicking twice changes the answer 

to “PREDICT BAD PROJECT”. You can click and change the answer as many times as you like. 

Look now at row numbered 1:  

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

1 You observe 1 person predicting “the project is 
good” 

? ? 

 

In the row numbered 1, you observe that somebody else predicted the project to be good. In this 

situation, we are asking you: suppose you observe ONE PERSON PREDICTING “THE PROJECT IS 

GOOD” and you receive a green ball from the urn; do you think the project is good or bad? And if 

instead you receive a red ball from the urn, do you think the project is good or bad? We will ask you to 

record your answers in the cells marked with symbol “?” in row 1. 

All other rows read in a similar way, but as you go down the table, the number of people you observe 

predicting “the project is good” increases in each row. In row numbered 2, you observe TWO PEOPLE 

PREDICTING “THE PROJECT IS GOOD”. In row numbered 3, you observe THREE PEOPLE 

PREDICTING “THE PROJECT IS GOOD”, and so on.  

For instance, look at row 6: 

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

6 You observe 6 people predicting the “project is 
good” 

? ? 

 

In row 6, we are asking you: suppose you observe SIX PEOPLE PREDICTING “THE PROJECT IS 

GOOD” and you receive the green ball; do you think the project is good or bad? And if, instead, you 

receive the red ball, do you think the project is good or bad?  

We will ask you to record your answers for each possible situation. So, you have to make 38 

decisions in total.  

 

 

Your Per-round earnings  

After all participants have made their predictions, the computer will reveal your position in the 

sequence, whether the project was good or bad, and the colour of your ball.  

Out of the 38 situations you were presented, only one situation will be relevant for your earnings, and this 

depends on three things:  

 



1. the colour of the ball you received;  
2. the position in the sequence the computer assigned to you;  
3. the decisions of the other participants who preceded you in the sequence. 

 
Your earnings will depend on whether your prediction was correct in that selected situation. 

Let us see some examples. Suppose, for instance, that your decisions in rows 0 to 3 are as follows:  

 

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a  
RED ball 

0 You observe no one predicting “the project is good”  PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

1 You observe 1 person predicting “the project is 
good” 

PREDICT GOOD 
PROJECT 

PREDICT BAD 
PROJECT 

2 You observe 2 people predicting “the project is 
good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

3 You observe 3 people predicting “the project is 
good” 

PREDICT GOOD 
PROJECT 

PREDICT BAD 
PROJECT 

4 You observe 4 people predicting “the project is 
good” 

. . 

5 You observe 5 people predicting “the project is 
good” 

. . 

6 You observe 6 people predicting “the project is 
good” 

. . 

7 You observe 7 people predicting “the project is 
good” 

. . 

8 You observe 8 people predicting “the project is 
good” 

. . 

9 You observe 9 people predicting “the project is 
good” 

. . 

… … . . 

18 You observe 18 people predicting “the project is 
good” 

. . 

 

For the purpose of the examples, we show you only 8 imaginary decisions out of the 38 decisions you will 

have to make. These decisions are just for the examples; do not attach any value to them. 

 
Example 1.  

Suppose the computer selects you as the first in the sequence and you receive the green ball from 

either urn. Clearly, being in the first position in the sequence, you observe no one predicting before your 

turn. Therefore, the relevant situation for your earnings is the one in row 0 (because you observe no one 

predicting “the project is good”) and in the column “you receive a green ball”, which is highlighted in 

yellow below:  

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

0 You observe no one predicting “the project is 
good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 



Since in this situation your prediction was “THE PROJECT IS BAD”, your earnings will be  

£0 if the project is good  
£7 if the project is bad  
 
 
Example 2.  

Suppose the computer selects you as the second in the sequence and you receive a green ball. The 

relevant situation for you depends on what the participant who was selected as first in the 

sequence decided to do. Suppose he received a red ball and predicted that the “project is bad” when he 

receives a red ball and observes no one predicting (as he does since he is the first in the sequence). In this 

case, being the second in the sequence, you observe no one predicting the “project is good”. Therefore, 

your relevant situation for your earnings is again the one in row 0 (because you observe no one predicting 

“the project is good”) and in the column “you receive a green ball”, which is highlighted in yellow below:  

 

 

Since in this situation you predicted that the “PROJECT IS BAD”, your earnings will be  

£0 if the project is good  
£7 if the project is bad 
 

Consider now the same example but a different scenario: suppose that the participant selected as the first 

in the sequence and who received a red ball predicted that “the project is good”. In this case, being the 

second in the sequence, you observe one person predicting “the project is good”. Therefore, the relevant 

situation for your earnings is the one in row 1 (because you observe one person predicting “the project is 

good”) and in the column “you receive a green ball”, which is highlighted in yellow below: 

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

0 You observe no one predicting “the project is 
good”  

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

1 You observe 1 person predicting “the project is 
good” 

PREDICT 
GOOD 

PROJECT  

PREDICT BAD 
PROJECT 

 

Since in this situation you predicted that the “PROJECT IS GOOD”, your earnings will be  

£7 if the project is good 
£0 if the project is bad  
 

 

 

 

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

0 You observe no one predicting “the project is 
good”  

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 



Example 3. 

Suppose the computer selects you as the third in the sequence and you receive a green ball. The 

relevant situation for you depends on what the participants who were selected as first and second 

in the sequence decided to do. Suppose that the one selected as first received a red ball and predicted 

that the project is bad when he observes no one predicting that the project is good and a red ball. 

Furthermore, suppose that the one selected as second received a green ball and predicted that the project 

is bad when he observes a green ball and no one predicting that the project is good (as he does because 

the first predicted that the project is bad). In this case, being the third in the sequence, you observe no 

one predicting that the project is good. Therefore, your relevant situation for your earnings is again the 

one in row 0 and in the column “you receive a green ball”, which is highlighted in yellow below: 

 

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

0 You observe no one predicting “the project is 
good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

 

Since in this situation you predicted that the “PROJECT IS BAD”, your earnings will be  

£0 if the project is good,  
£7 if the project is bad. 
 

Consider now the same example but a different scenario: suppose that the participant selected as second 

and who received a green ball decided that he would predict that the project is good. In that case, being 

the third in the sequence, you observe one person predicting that the project is good. Therefore, the 

relevant situation for your earnings is the one in row 1 and in the column “you receive a green ball”, 

which is highlighted in yellow below:  

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

0 You observe no one predicting “the project is 
good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

1 You observe one person predicting “the project is 
good” 

PREDICT GOOD 
PROJECT 

PREDICT BAD 
PROJECT 

 

Since in this situation you predicted that the “PROJECT IS GOOD”, your earnings will be  

£7 if the project is good, 
£0 if the project is bad. 
 
 
Consider now a different scenario. Suppose that the participant selected as first in the sequence and who 

received a red ball decided that he would predict that the project is good. Furthermore, suppose that the 

one selected as second and who received a green ball decided that he would predict that the project is 

good when he observes a green ball and one person predicting that the project is good (as he does 

because the first participant made this prediction). In this case, being the third in the sequence, you 

observe two people predicting that the project is good. Therefore, the relevant situation for your earnings 

is the one in row 2 and in the column “you receive a green ball”, which is highlighted in yellow below:  



 

Row  Number of people predicting “the project is 
good” you observe: 

You receive a 
GREEN ball 

You receive a 
RED ball 

0 You observe no one predicting “the project is 
good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

1 You observe one person predicting “the project is 
good” 

PREDICT GOOD 
PROJECT  

PREDICT BAD 
PROJECT 

2 You observe two people predicting “the project is 
good” 

PREDICT BAD 
PROJECT 

PREDICT GOOD 
PROJECT 

 

Since in this situation you predicted that the “PROJECT IS BAD”, your earnings will be  

£0 if the project is good,  
£7 if the project is bad.  
 
The same logic applies to any other position in the sequence in which you may be selected. Since the 

computer chooses the sequence randomly, you may end up in any position. Hence, think 

carefully about what is in your interest to do in each situation. 

Your earnings will be summarised on a screen. For example, take the last scenario in example 3: you will 

see your earnings on a screen similar to the one below:  

 

Your earnings for round # 1 

The project was good. 

You received a green ball. 

You were the third in the sequence. 

Based on your predictions and the other participants’ predictions, the sequence of predictions in this 

round is:  

 

Since you predicted that the project is bad and the project was GOOD, your earnings for this round are 

£0.  

 

 

 

Your and 
other 
participants’ 
position in 
the 
sequence  

1st in 
sequence  

2nd in 
sequence 

3rd  in 
sequence: 

YOU 

4th  in 
sequence 

5th  in 
sequence 

6th  in 
sequence 

7th  in 
sequence 

8th  in 
sequence 

… 19th  in 
sequence 

Participant’s 
prediction  

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

“BAD 
PROJECT” 

“BAD 
PROJECT” 

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

“GOOD 
PROJECT” 

… “GOOD 
PROJECT” 



How much would my payoff be if I were in a different position in the sequence?  

Your accrued earnings for each round are based on one selected sequence. For instance, in the example 

above you were selected as the third in the sequence. What would your payoff be had you been in a 

different position in the sequence? For example, how much would you have gotten if you had been first 

in the sequence? And, what if you had been selected as the second in the sequence?  

At the end of each round, the computer will tell you the payoff you would have gained on average for 

each possible position in the sequence in which you could be, based on your predictions and on the 

predictions of the other participants in this round. These will be average earnings because there are many 

potential sequences. For instance, if you are second in the sequence, each of the remaining 18 participants 

can be selected as the first. Your average earnings are calculated based on your predictions and on the 

predictions of others in a random set of potential sequences. 

These average payoffs will not accrue to your final earnings. But they will give you an idea about 

the quality of your predictions.  

Your average payoffs for each position in the sequence will be shown on the last screen of each round. 

You will see your average payoff for each position in the sequence on a screen similar to the one below:  

__________________________________________________________________________________ 

What would your payoffs be on average if you had been selected in any other position in the 

sequence? 

 

Each column below tells you the average payoff for each possible position in the sequence. Note that 

these average payoffs are calculated based on the predictions of all participants in this round. 

 

__________________________________________________________________________________ 

 

 

 

 

Based on your predictions and the predictions of other participants in this round, if you had been selected in the  

 
1st 

position 

in the 
sequence, 

your average 
payoff 

would have 
been 

£7.00 

 

2nd 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£7.00 

 

3rd 
position  

in the 
sequence, 

your average 
payoff  

would have 
been 

£5.45 

 

4th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£3.50 

 

5th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£1.83 

 

6th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£0.72 

 

7th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£0.17 

 

8th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£0.00 

 

… 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£... 
 

19th 
position  

in the 
sequence, 

your average 
payoff 

would have 
been 

£0.00 

 



Final payment 

For showing up in time for the experiment, you earn £10. In addition, you will earn an amount which 

depends on your answers during the experiment. We will pay you according to your accrued earnings in 3 

randomly selected rounds.  

Remember, this experiment has 15 rounds, and you accrue some earnings in each round. After the last 

round, three rounds among the 15 rounds will be selected randomly (one among the rounds 1-5, one 

among rounds 6-10 and one among rounds 11-15). We will sum up your earnings in these 3 rounds 

and add £10 for showing up. Since each round has an equal chance to be selected for payment, think 

carefully about what is in your interest to do in each round.  

Do you have any question? If so, please raise your hand. The experiment will start shortly.   
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